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Context: Software defect number prediction (SDNP) can rank the program modules according to the prediction 

results and is helpful for the optimization of testing resource allocation. 

Objective: In previous studies, supervised methods vs unsupervised methods is an active issue for just-in-time 

defect prediction and file-level defect prediction based on effort-aware performance measures. However, this 

issue has not been investigated for SDNP. To the best of our knowledge, we are the first to make a thorough 

comparison for these two different types of methods. 

Method: In our empirical studies, we consider 7 real open-source projects with 24 versions in total, use FPA and 

Kendall as our effort-aware performance measures, and consider three different performance evaluation scenarios 

(i.e., within-version scenario, cross-version scenario, and cross-project scenario). 

Result: We first identify two unsupervised methods with best performance. These two methods simply rank 

modules according to the value of metric LOC and metric RFC from large to small respectively. Then we compare 9 

state-of-the-art supervised methods incorporating SMOTEND, which is used for handling class imbalance problem, 

with the unsupervised method based on LOC metric (i.e., LOC_D method). Final results show that LOC_D method 

can perform significantly better than or the same as these supervised methods. Later motivated by a recent study 

conducted by Agrawla and Menzies, we apply differential evolutionary (DE) to optimize parameter value of 

SMOTEND used by these supervised methods and find that using DE can effectively improve the performance of 

these supervised methods for SDNP too. Finally, we continue to compare LOC_D with these optimized supervised 

methods using DE, and LOC_D method still has advantages in the performance, especially in the cross-version 

and cross-project scenarios. 

Conclusion: Based on these results, we suggest that researchers need to use the unsupervised method LOC_D as 

the baseline method, which is used for comparing their proposed novel methods for SDNP problem in the future. 
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. Introduction 

Software defects are introduced unconsciously during the devel-
pment process of software project. After the software project is de-
loyed, defects in the software will produce unexpected behaviors, even
ill cause huge economic loss for enterprises in worst cases. Therefore
roject managers want to use software quality assurance methods (such
s software testing, code inspection) to detect defects as many as pos-
ible. Due to the limitation of testing resources, project managers hope
hat they can resort to effective methods to identify potential defective
odules as early as possible. Software defect prediction [1–4] is one of

uch effective methods. It constructs defect prediction models by min-
ng software repositories (such as version control systems, bug tracking
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ystems) and uses the constructed models to identify potential defective
odules in new projects. 

Most of previous studies discretize continuous defect number of pro-
ram modules into defective or non-defective [5] . This simple data pre-
rocessing may lead to information loss. In addition, predicting defect
umber for program modules can assist in sorting program modules and
hen allocate more testing resources to these modules, which may con-
ain more defects. In this way, the allocation of testing resources can be
urther optimized. 

In previous studies, supervised methods vs unsupervised methods is
n active issue for just-in-time defect prediction [6–8] and file-level de-
ect prediction [9] based on effort-aware performance measures (such
s ACC, P ). To the best of our knowledge, we first make a thorough
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omparison for two different types of methods for software defect num-
er prediction (SDNP) problem. 

In our empirical studies, we consider 7 real open-source projects
such as ant, camel, etc) with 24 versions in total, use FPA and Kendall

s our performance measures, and consider three different performance
valuation scenarios (i.e., within-version scenario, cross-version sce-
ario, and cross-project scenario). Final results show that some unsu-
ervised methods can not be neglected in the future study for software
efect number prediction. 

To support the above conclusion, we mainly investigate three re-
earch questions in our empirical studies. 

RQ1: Can supervised methods using SMOTEND perform better

han unsupervised methods? 

For this RQ, we first identify two unsupervised methods with best
erformance. These two methods rank modules according to the value
f metric LOC and metric RFC from large to small, respectively. Then
e compare 9 state-of-the-art supervised methods incorporating SMO-
END [10] , which is used for solving class imbalance problem, with the
nsupervised method based on LOC (i.e., LOC_D). Final results show
hat LOC_D can perform significantly better than or the same as these
upervised methods in three scenarios. 

RQ2: Can using differential evolutionary for SMOTEND improve

he performance of supervised methods? 

This RQ is motivated by a recent study conducted by Agrawla and
enzies [11] . We apply differential evolutionary (DE) for SMOTEND

sed by these supervised methods and find that using DE can effectively
mprove the performance of these supervised methods. These findings
re in consistent with the conclusions found by Agrawla and Menzies
11] . 

RQ3: Can supervised methods using DE perform better than un-

upervised methods? 

Based on the conclusion of RQ2, we continue to compare LOC_D
ith these supervised methods using DE for optimization, and find that
revious conclusions in RQ1 still hold, especially in the cross-version
nd cross-project scenarios. 

The main contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to consider unsuper-
vised methods for SDNP problem and find that two unsupervised
methods have best performance based on performance measures FPA

and Kendall . These two methods simply rank modules according to
the value of metric LOC and metric RFC from large to small, respec-
tively. 

• To thoroughly compare the performance of supervised methods and
unsupervised methods, we consider three different validation scenar-
ios (i.e., within-version scenario, cross-version scenario, and cross-
project scenario). 

• We apply differential evolutionary for SMOTEND to improve the per-
formance of supervised methods for SDNP problem. 

• Based on 7 real open-source projects, we conduct empirical studies to
compare the performance of state-of-the-art supervised methods and
unsupervised methods. Empirical results show that the unsupervised
method LOC_D, which ranks modules according to the metric LOC
from large to small, can perform significantly better than or the same
as supervised methods, which are even optimized for SMOTEND by
using differential evolutionary. 

The rest of this paper is structured as follows: Section 2 summarizes
elated work. Section 3 shows all the supervised methods and unsuper-
ised methods used in our empirical studies. Section 4 shows experi-
ental design, including experimental subjects, performance measures,
erformance evaluation scenarios, and statistical analysis methods used
or result analysis. Section 5 and Section 6 perform result analysis and
onduct some discussions. Section 7 analyzes threats to validity for our
mpirical studies. Section 8 concludes this paper and discusses some
otential future work. 
162 
. Related work 

In this section, we first review previous studies for software defect
umber prediction. Then we summarize the class imbalanced problem
n software defect prediction. Finally, we review unsupervised methods
or software defect prediction. 

.1. Software defect number prediction 

Predicting defect number for program modules can guide the sort-
ng process of these modules and then allocate more testing resources to
hose program modules, which may contain more defects. In this way,
ore defects can be detected and repaired when given the limited test-

ng resources. 
Previous studies investigated regression based methods for this prob-

em. Graves et al. [12] considered a generalized linear regression
ethod. They conducted empirical studies on a large-scale telecommu-
ication system and found that module’s age, changes made to the mod-
les, and the age of changes have a significant correlation. Wang and
hang [13] proposed BugState, which was based on a defect state transi-
ion model. Ostrand et al. [14] employed negative binomial regression
NBR) method. Janes et al. [15] considered three methods (i.e., NBR,
ero-inflated NBR, Poisson regression) for five real-time telecommuni-
ation systems. They found that zero-inflated NBR method achieved the
est performance. Then Gao and Khoshgoftaar [16] further performed
mpirical studies on two industrial software projects and found that
ero-inflated NBR can also achieve better performance. 

Chen et al. [17] conducted empirical studies for six regression algo-
ithms and found that using decision tree regression can achieve highest
erformance in both within-project scenario and cross-project scenario.
u et al. [10] explored resampling (i.e., SMOTEND and RUSND) and en-
emble learning (i.e., AdaBoost.R2) methods. Then they proposed two
ybrid methods (i.e., SMOTENDBoost and RUSNDBoost) and these two
ethods can achieve higher performance. 

Rathore and Kumar [18] explored the capability of decision tree re-
ression in two different scenarios (i.e., intra-release prediction scenario
nd inter-release prediction scenario). They [19] compared six meth-
ds for SDNP, such as genetic programming, multi-layer perceptron,
inear regression, decision tree regression, zero-inflated Poisson regres-
ion, and negative binomial regression. Recently, they [20,21] further
onsidered ensemble learning methods for SDNP. 

Based on the above analysis, we found that most of previous studies
ocus on regression based supervised methods and conduct empirical
tudies on these methods. However, none of previous studies investigate
he possibility of unsupervised methods for SDNP. 

.2. Class imbalance problem for software defect prediction 

Datasets with imbalanced class distributions are quite common
n many real applications, such as fraud detection, anomaly detec-
ion, medical diagnosis [22] . For software defect prediction, gathered
atasets often have class imbalance problem too (i.e., the number of de-
ective modules is overwhelmed by the number of non-defective mod-
les). In this paper, the non-defective module is called as majority class
hile the defective module is called as minority class, since most of the
efects are distributed in a small number of program modules. Most ma-
hine learning methods can have satisfactory performances when the
umber of instances for each class is roughly equal. When the num-
er of instances for one class far exceeds the other, the performances
f machine learning methods will be unsatisfactory. Many class imbal-
nce methods have been proposed to alleviate this problem and these
ethods can be roughly classified into three categories: sample based
ethods, cost-sensitive methods, and ensemble learning methods [22] .
ntil now, class imbalance problem for software defect prediction has
een thoroughly investigated [23–27] . In a recent literature review [11] ,
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hawla and Menzies found that most previous studies used SMOTE (syn-
hetic minority over-sampling technique) [28] , which is a typical sample
ased method, to solve the class imbalance problem for software defect
rediction. Then they [11] proposed SMOTUNED, which is a self-tuning
ersion of SMOTE by using differential evolutionary. Based on their em-
irical results, they concluded that data preprocessing was more impor-
ant than classifier choice and SMOTUNED was a promising candidate
or data preprocessing. Moreover SMOTUNED can even perform better
han a new imbalance learning method MAHAKIL proposed by Bennin
t al. [29] . In this paper, we will analyze whether their data preprocess-
ng method [28] is applicable to SDNP problem. 

.3. Unsupervised methods for software defect prediction 

It is not hard to find that most of previous studies focus on super-
ised methods. However, the expensive cost of gathering high-quality
raining set is still a barrier for applying software defect prediction to
he real software development process. Therefore researchers started to
nvestigate the possibility of unsupervised methods. The advantage of
nsupervised methods can be summarized as follows: (1) It is straight-
orward to understand and much easier to implement. (2) It does not
equire any labeled training data or any complicated machine learning
ethods. Thus, unsupervised methods can be easily applied to a new
roject and have faster running speed. 

Recently supervised methods vs unsupervised methods is a contro-
ersial issue for just-in-time defect prediction and file-level defect pre-
iction based on effort-aware performance measures (such as ACC and
 OPT ). In particular, for just-in-time (i.e., code change based) defect pre-
iction, Kamei et al. [30] designed metrics based on diffusion, size, pur-
ose, history, and developer experience for code changes. Then they
roposed EALR method. Yang et al. [6] later considered simple un-
upervised methods and surprisedly found that some of these meth-
ds performed better than previous supervised methods in most cases
hen considering cross-validation, timewise-cross-validation, and cross-
roject-validation scenarios. Fu and Menzies [7] revisited Yang et al.’s
mpirical studies [6] and found that not all unsupervised methods had
etter performance than supervised methods. Therefore they proposed
neWay method, which can automatically select the potential best
ethod. Huang et al. [8] also revisited Yang et al.’s study [6] . They

onsidered two new performance measures (i.e., PCI @20% and IFA ) and
roposed a simple but improved method CBS. Liu et al. [31] proposed
hurn (i.e. the change size of a code change) based unsupervised method
nd found that this method performed better than previous proposed
nsupervised methods [6] . Yan et al. [9] replicated Yang et al.’s study
6] for file-level defect prediction, which the granularity of the modules
s set as file. They found that the conclusions of Yang et al. [6] did not
old under within-project defect prediction but held under cross-project
efect prediction. 

Different from previous studies, we want to investigate performance
ifference between supervised methods and unsupervised methods for
DNP problem. 

. Methods for software defect number prediction 

In this section, we mainly introduce the supervised methods and un-
upervised methods considered in our empirical studies for software de-
ect number prediction. 

.1. Supervised methods 

In this subsection, we first introduce 9 state-of-the-art regression
ased supervised methods. Then we introduce the SMOTEND method
sed for solving class imbalance problem. Finally, we introduce how to
se differential evolutionary to optimize the value of parameters used
or SMOTEND. 
163 
.1.1. Regression based supervised methods 

Software defect number prediction is a typical regression problem.
n this paper, we consider 9 state-of-the-art methods used in previous
tudies [5,10,17,19] . 

Linear regression (LR) is based on a statistical model. It is used to
olve the least squares function of the linear relationship between one
r multiple independent variables and a dependent variable. 

Bayesian ridge regression (BRR) is based on a probabilistic model,
hich is similar to the Ridge Regression. The hyper parameters of such
odels are introduced by prior probability and then estimated by max-

mizing the marginal log likelihood with these probabilistic models. 
Decision tree regression (DTR) is based on a decision tree model. In

articular, it learns simple decision rules to approximate the curve of a
iven training set, and then predicts the target variable. 

Nearest Neighbors Regression (NNR) is based on the k -nearest neigh-
or algorithm. The regression value of an instance is computed by the
eighted average value of its nearest neighbors. Then the weight is set
roportional to the inverse of the distance between the instance and its
eighbors. 

Gradient Boosting Regression (GBR) is in the form of an ensemble
f weak prediction models. Several base learners are combined with a
iven machine learning method to improve the prediction performance
ver a single learner. 

Random forest regressor (RF) is a meta estimator that fits a number
f decision trees on various sub-samples of the dataset and uses averag-
ng to improve the prediction performance and controls the over-fitting
ssue. The sub-sample size is always the same as the original dataset size,
ut the samples are drawn with replacement if bootstrap is set as true. 

Moreover, we consider an ensemble learning method AdaBoost.R2
32] , which is a classical boosting algorithm for the regression problem.
ased on the suggestions of the previous study [10] , we consider DTR,
RR and LR as the base learner respectively and denote these supervised
ethods as ABR2_DTR, ABR2_BRR and ABR2_LR respectively. 

.1.2. SMOTEND Method 

However, the highly class imbalanced distribution may degrade the
erformance of SDNP methods [10] . In this paper, we consider SMO-
END [10] to handle this problem and make some modifications on this
ethod. 

Torgo et al. [33] mentioned three important issues to adapt SMOTE
28] for regression problem: (1) how to define the normal target vari-
ble values and the rare target variable values. (2) how to create new
ynthetic instances. (3) how to decide the target variable values of these
ew synthetic instances. For the first issue, we can define defective mod-
les as rare instances and define non-defective modules as normal in-
tances. For the second issue, we can use the same strategy of original
MOTE method. For the third issue, we can use a weighted average of
he target variable values of the two seed instances. The weights are
ecided based on the distance between the synthetic instance and these
wo seed instances. The larger the distance is, the smaller the weight is.

In our SMOTEND, we identify three parameters: m, k and r . In partic-
lar, r is the parameter of Minkowski distance, while previous version of
MOTEND only considered Euclidean distance. Minkowski distance can
e considered as a generalization of both the Euclidean distance and the
anhattan distance. The Minkowski distance with parameter r between

wo points 𝑋 = ( 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑛 ) and 𝑌 = ( 𝑦 1 , 𝑦 2 , ⋯ , 𝑦 𝑛 ) can be computed
s follows: 

𝐷( 𝑋, 𝑌 , 𝑟 ) = 

( 

𝑛 ∑
𝑖 =1 

|𝑥 𝑖 − 𝑦 𝑖 |𝑟 
) 1∕ 𝑟 

(1)

The parameter k determines the number of neighbors. The param-
ter m controls the number of synthetic instances. Different from pre-
ious version of SMOTEND [10] , we use the function NumSynthetic to
ompute the number of synthetic instances generated by SMOTEND.
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Algorithm 2 Differential Evolutionary for SMOTEND. 

Input: 

𝑃 - Population Size, 𝐷 - Number of Parameters, 𝑇 - Number of 
Generations, 𝑅 - Range of Parameters, 𝐹 - Differential Weight, 𝐶𝑅 

- Crossover Probability 
Output: 

𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 - Best Solution Vector 
1: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 = 𝑁𝑈𝐿𝐿 
umSynthetic can be computed as follows: 

𝑢𝑚𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐( 𝑚 ) = 

( |𝐷 𝑚𝑎𝑗 | − |𝐷 𝑚𝑖𝑛 |) × 𝑚 

𝑁 

(2)

Here D maj and 𝐷 min denote the majority instances (i.e., non-defective
odules) and minority instances (i.e., defective modules), respectively.

n the function NumSynthetic , we first compute the difference between
 D maj | and |𝐷 min | and then divide it into N equal parts. For the conve-
ience of analysis, we set N to 6 and use m ∈ {0, 1, ⋅⋅⋅, N } as the candidate
alues for this parameter. When m is set as N , the training set D after
sing SMOTEND will have balanced class distributions. While when m
s set as 0, it means that no synthetic instances are generated. 

The pseudocode of SMOTEND can be found in Algorithm 1 . It first
omputes the number of synthetic instances that need to be generated
y using Function 2 (Line 1). Then it computes the nearest k neighbors
or each instance in the minority class by using the Minkowski distance
Lines 4–6). Here 𝐷 min [ 𝑖 ] denotes the i -th instance for the minority class
nd ins [ i ] stores the indexes of k neighbors for 𝐷 min [ 𝑖 ] . Finally, it gen-
rates numSynthetic synthetic instances (Lines 7–17). To generate a syn-
hetic instance, it computes the difference of the feature vector between
he i -th minority instance and its nearest neighbor, then it multiples this
ifference by a random number between 0 and 1, later it is added to
he feature vector of the i -th minority instance. The number of defects
or this synthetic instance is a weighted average of these two chosen
nstances. Here the y ( x ) function returns the number of defects in the
nstance x . 

.1.3. SMOTEND Method optimized by using differential evolutionary 

The area of hyper parameter optimization for defect prediction mod-
ls has been studies nowadays and researchers have found that the hyper
arameter optimization can not be neglected in most cases [34–38] . In
 recent study [11] , Agrawal and Menizes proposed SMOTUNED, which
s a self-tuning version of SMOTE by using differential evolutionary (DE)
39] . In their empirical studies, they found that SMOTUNED can effec-
ively improve the performance and even perform better than a recently
roposed method MAHAKIL [29] . However, SMOTUNED is optimized
or traditional SMOTE method. In this paper, we will consider this opti-
ization for our considered SMOTEND method. 
lgorithm 1 SMOTEND. 

nput: 

𝑘 - Number of Neighbours, 𝑚 - Parameter Determining Number of 
Synthetic Instances, 𝑟 - Parameter of Minkowski Distance, 𝐷 min - 
Instances of Minority Class 𝐷 𝑚𝑎𝑗 - Instances of Majority Class 

utput: 

𝐷 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 - Synthetic Instances Generated by SMOTEND 

1: 𝑛𝑢𝑚𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 

( |𝐷 𝑚𝑎𝑗 |− |𝐷 min |)×𝑚 
𝑁 

// 𝑁=6 
2: 𝑖𝑛𝑑𝑒𝑥 = 0 
3: 𝐷 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = ∅
4: for 𝑖 = 0 ; 𝑖 < |𝐷 min |; 𝑖 + + do 

5: Computing 𝑘 nearest neighbours for the instance 𝐷 min [ 𝑖 ] , and stor- 
ing the indices in 𝑖𝑛𝑠 [ 𝑖 ] //using the Minkowski Distance 

6: end for 

7: while 𝑛𝑢𝑚𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 > 0 do 

8: 𝑣 1 = 𝐷 min [ 𝑖𝑛𝑑𝑒𝑥 ] 
9: 𝑣 2 = 𝐷 min [ 𝑟𝑎𝑛𝑑 ( 𝑖𝑛𝑠 [ 𝑖𝑛𝑑 𝑒𝑥 ])] 

10: 𝑛𝑒𝑤 = 𝑣 1 + 𝑟𝑎𝑛𝑑(0 , 1) × ( 𝑣 2 − 𝑣 1 ) 
11: 𝑑 1 = 𝑀𝐷( 𝑛𝑒𝑤, 𝑣 1 , 𝑟 ) 
12: 𝑑 2 = 𝑀𝐷( 𝑛𝑒𝑤, 𝑣 2 , 𝑟 ) 
13: 𝑦 ( 𝑛𝑒𝑤 ) = 

𝑑 1 ×𝑦 ( 𝑣 2 )+ 𝑑 2 ×𝑦 ( 𝑣 1 ) 
𝑑 1 + 𝑑 2 

14: 𝐷 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝐷 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 ∪ { 𝑛𝑒𝑤 } 
15: 𝑖𝑛𝑑𝑒𝑥 = ( 𝑖𝑛𝑑𝑒𝑥 + 1) mod |𝐷 min |
16: 𝑛𝑢𝑚𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 − − 

17: end while 

18: return 𝐷 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 
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Before introducing DE for SMOTEND, we first define some notations.
 solution is comprised of D parameters and can be represented a vector

i.e., chromosome). For the sake of convenience, we call it the solution
ector and D is the dimension of the vector. We use 𝑥 𝑡 

𝑖 
to denote the i -th

olution vector in the t -th generation and 𝑥 𝑡 
𝑖,𝑗 

to denote the j -th value
or this vector. For this optimization algorithm, D is set as three since
e optimize three parameters (i.e., m, k, r ) for SMOTEND. The function
tness () is used to evaluate the quality (measured by FPA or Kendall ,
hich will be introduced in Section 4 ) of the solution vector and larger
alue means better performance. For example, if we consider FPA as the
erformance measure, we first use SMOTEND by the parameter values
ased on the solution vector to generate synthetic instances and use the
reprocessed dataset to train the model by a specific regression algo-
ithm. Then we can use the prediction result of this model on the test
et based on FPA as the fitness value. 

The main process of this algorithm can be found in Algorithm 2 . First,
e initialize the first generation population. Here 𝑅 

𝑖 
max and 𝑅 

𝑖 
min denote

he maximum and minimum value for the i -th parameter respectively.
ccording to R and a random function rand (), we can randomly initialize
ach solution vector in the first generation (Lines 3–14). Here bestParas

epresents the optimal solution vector found at present. If the generated
ew solution vector has better fitness value, bestParas will be updated
y this new solution vector (Lines 11–13). 

Then the population will continually evolve (i.e., after T generations)
nd return bestParas as the best solution vector (Lines 15–27). During
ach generation, we will use genNewInstance to generate a new solution
ector v , compare it to the vector 𝑥 𝑖 −1 

𝑗 
and choose the vector with larger
2: 𝑡 = 0 {Population initialization} 
3: for 𝑖 = 0 ; 𝑖 < 𝑃 ; 𝑖 + + do 

4: for 𝑗 = 0 ; 𝑗 < 𝐷; 𝑗 + + do 

5: if The type of 𝑗 − 𝑡ℎ parameter is continuous then 

6: 𝑥 𝑡 
𝑖,𝑗 

= 𝑅 

𝑗 

min + 𝑟𝑎𝑛𝑑(0 , 1) × ( 𝑅 

𝑗 
max − 𝑅 

𝑗 

min ) 
7: else if The type of 𝑗 − 𝑡ℎ parameter is integer then 

8: 𝑥 𝑡 
𝑖,𝑗 

= 𝑅 

𝑗 

min + [ 𝑟𝑎𝑛𝑑(0 , 1) × ( 𝑅 

𝑗 
max − 𝑅 

𝑗 

min )] 
9: end if 

10: end for 

11: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 ) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑥 𝑡 
𝑖 
) then 

12: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 = 𝑥 𝑡 
𝑖 

13: end if 

14: end for 

{Population evolution} 
15: for 𝑖 = 1 ; 𝑖 < 𝑇 ; 𝑖 + + do 

16: for 𝑗 = 0 ; 𝑗 < 𝑃 ; 𝑗 + + do 

17: 𝑣 = 𝑔𝑒𝑛𝑁 𝑒𝑤𝐼 𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝐷, 𝐹 , 𝐶𝑅, 𝑥 𝑖 −1 
𝑗 
, 𝑖 ) 

18: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑣 ) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑥 𝑖 −1 
𝑗 

) then 

19: 𝑥 𝑖 
𝑗 
= 𝑣 

20: else 

21: 𝑥 𝑖 
𝑗 
= 𝑥 𝑖 −1 

𝑗 

22: end if

23: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 ) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ( 𝑥 𝑖 
𝑗 
) then 

24: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 = 𝑥 𝑖 
𝑗 

25: end if 

26: end for 

27: end for 

28: return 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑎𝑠 
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Table 1 

Parameters for SMOTEND. 

Parameter Default Value Candidate Values Description 

k 5 {1, 2, ⋅⋅⋅, 20} Number of neighbors 

m 6 {0, 1, ⋅⋅⋅, 6} Determining the number of synthetic instances 

r 2 0.1 ≤ r ≤ 5 Parameter for the Minkowski distance 

Table 2 

Parameter Value used for Differential Evolu- 

tionary [39] . 

Parameter Value Description 

F 0.7 Differential Weight 

CR 0.3 Crossover Probability 

P 30 Population Size 

T 8 Number of Generations 

D 3 Number of Parameters 
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tness value into the next generation. Meanwhile, if the new vector 𝑥 𝑖 
𝑗 

as the larger fitness value than bestParas, bestParas will be updated by
 

𝑖 
𝑗 
. 
We use Algorithm 3 to illustrate the function genNewInstance . This

unction first performs mutation operator. In particular, it randomly ob-
ains three vectors ( v 1 , v 2 and v 3 ) and creates a mutated vector (Lines
–2). Here the type of two parameters for SMOTEND is integer, therefore
e perform round operation on the value of corresponding parameters

Lines 3–7). Then the function performs crossover operator. In particu-
ar, we change some values of mutated vector to the values of the parent
ector. Here target denotes the parent vector, u denotes the mutated vec-
or and v denotes the new vector, The crossover process can be found in
ines 8–15 and the judgment condition in Line 10 can make sure that
t least one value in the mutated vector can go to the new vector. 

The parameters and their search range of SMOTEND can be found
n Table 1 , including parameter name, default value, candidate values
nd its description. Moreover, the parameter value for differential evo-
utionary can be found in Table 2 based on the suggestions by Storn and
rice [39] . 
lgorithm 3 genNewInstance. 

nput: 

𝐷 - Number of Parameters, 𝐹 - Differential Weight, 𝐶𝑅 - Crossover 
Probability, 𝑡𝑎𝑟𝑔𝑒𝑡 - The Vector Solution used for Crossover the Mu- 
tation, 𝑖 - 𝑖 -th Generation 

utput: 

𝑣 - The New Generated Solution Vector 
{Performing mutation operator} 

1: Selecting three vectors 𝑥 𝑖 −1 
𝑡 1 , 𝑥 

𝑖 −1 
𝑡 2 , 𝑥 

𝑖 −1 
𝑡 3 randomly and ( 𝑡 1 ≠ 𝑡 2 ≠ 𝑡 3) 

2: 𝑢 = 𝑥 𝑖 −1 
𝑡 1 + 𝐹 × ( 𝑥 𝑖 −1 

𝑡 2 − 𝑥 𝑖 −1 
𝑡 3 ) 

3: for 𝑘 = 0 ; 𝑘 < 𝐷; 𝑘 + + do 

4: if The type of 𝑘 -th parameter is integer then 

5: 𝑢 𝑘 = [ 𝑢 𝑘 ] 
6: end if 

7: end for 

{Performing crossover operator} 
8: 𝑟𝑑 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 ( 𝐷) 
9: for 𝑘 = 0 ; 𝑘 < 𝐷; 𝑘 + + do 

10: if 𝑟𝑎𝑛𝑑(0 , 1) < 𝐶𝑅 or 𝑘 == 𝑟𝑑 then 

11: 𝑣 𝑘 = 𝑢 𝑘 
12: else 

13: 𝑣 𝑘 = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑘 
14: end if 

15: end for 

16: return 𝑣 
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.2. Unsupervised methods 

Unsupervised methods have attracted more interests in current soft-
are defect prediction research. These methods do not need any training

et, are very simple, and have a low model construction cost. Yang et al.
6] proposed 12 simple unsupervised methods based on metrics (such
s NS, ND, etc) for just-in-time (i.e, code change based) defect predic-
ion. For a specific metric, it computes the defect-proneness probability
or i -th code change as 1/ v i , where v i denotes the value of i -th code
hange for this metric. This means that the smaller the metric value, the
igher the defect-proneness probability. Then all the code changes will
e ranked in the descendant order according to the computed proba-
ility. The idea of these unsupervised methods [6] is motivated by the
ndings of Koru et al. [40,41] that smaller modules should be inspected
rst, since the relationship between the module size and the number of
efects is logarithmic. ManualUp model (i.e., smaller modules should
e inspected first) proposed by Menzies et al. [42] further verified Koru
t al.’s findings. However, the effectiveness of these unsupervised meth-
ds is only verified on two effort-aware performance measures (i.e., ACC

nd P OPT ). For software defect number prediction, we mainly consider
wo different performance measures (i.e., FPA and Kendall ), which will
e introduced in Section 4 . Therefore, we still consider the simple un-
upervised methods proposed by Yang et al. [6] and Yan et al. [9] . That
s to say, given a metric, we rank the program modules in the ascend-
ng order according to the metric value. Moreover, we further consider
nsupervised methods using another ranking strategy. That is to say,
e rank the program modules in the descending order according to the
etric value when given a metric. Since our subjects consider 20 code

omplexity based metrics, which will be introduced in Section 4 , 40 dif-
erent simple unsupervised methods in total are used in our empirical
tudies. 

. Experimental design 

.1. Experimental subjects 

In our empirical studies, we choose 7 experimental subjects (with
4 versions in total) from open-source projects. These subjects can be
ownloaded from seacraft repository 1 and they are widely used in pre-
ious empirical studies [9,10,17,20,21,43,44] . 

The granularity of the program modules in these subjects is set as
lass. The characteristics of these subjects are shown in Table 3 , which
ncludes project name, project version, number of modules, number of
efective modules, and the maximum defects contained in the modules.

For these subjects, metrics are designed based on the code complex-
ty and features of object oriented program [43] . Table 4 includes met-
ic category, metric name and corresponding description. Compared to
oftware development process based metrics, the value of these metrics
an be automatically extracted from program modules with a few efforts
ven for large-scale software systems [45] . 

.2. Performance measures 

For software defect number prediction, AAE (average absolute er-
or), ARE (average relative error), and RMSE (root mean square error)
1 http://tiny.cc/seacraft 

http://tiny.cc/seacraft
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Table 3 

Statistic of experimental subjects. 

Project Version #Modules #Defective Modules %Defective Modules Max Defects 

ant ant-1.3 125 33 16.00% 3 

ant-1.4 178 47 22.47% 3 

ant-1.5 293 35 10.92% 2 

ant-1.6 351 184 26.21% 10 

ant-1.7 745 338 22.28% 10 

camel camel-1.0 339 14 3.83% 2 

camel-1.2 608 522 35.53% 28 

camel-1.4 872 335 16.63% 17 

camel-1.6 965 500 19.48% 28 

ivy ivy-1.1 111 233 56.76% 36 

ivy-1.4 241 18 6.64% 3 

ivy-2.0 352 56 11.36% 3 

jedit jedit-3.2 272 382 33.09% 45 

jedit-4.0 306 226 24.51% 23 

jedit-4.1 312 217 25.32% 17 

jedit-4.2 367 106 13.08% 10 

synapse synapse-1.0 157 21 10.19% 4 

synapse-1.1 222 99 27.03% 7 

synapse-1.2 256 145 33.59% 9 

xalan xalan-2.4 723 156 15.21% 7 

xalan-2.5 803 531 48.19% 9 

xalan-2.6 885 625 46.44% 9 

xerces xerces-1.2 440 115 16.14% 4 

xerces-1.3 453 193 15.23% 30 

Table 4 

Metrics used by experimental subjects. 

Category Metric Name Description 

Complexity LOC Lines of Code 

WMC Weighted Methods per Class 

NPM Number of Public Methods 

AMC Average Method Complexity 

Max_cc Max McCabe’s Cyclomatic Complexity 

Avg_cc Avg McCabe’s Cyclomatic Complexity 

MOA Measure of Aggregation 

Coupling CBO Coupling between Object Classes 

RFC Response for a Class 

CA Afferent Couplings 

CE Efferent Couplings 

IC Inheritance Coupling 

CBM Coupling Between Methods 

Cohesion LCOM Lack of Cohesion in Methods 

LCOM3 Lack of Cohesion in Methods 

CAM Cohesion Among Methods of Class 

Abstraction DIT Depth of Inheritance Tree 

NOC Number Of Children 

MFA Measure of Functional Abstraction 

Encapsulation DAM Data Access Metric 
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re often used in previous studies [17,20,21] . However these measures
an result in over-optimistic estimation when datasets have the class
mbalance problem. Supposing we have a simple model, this model can
redict all the modules as non-defective (i.e., the defect number for each
odule is 0). If we use this model to make a prediction on dataset Camel-
.0, which contains 14 defective modules and 325 non-defective mod-
les, AAE value of this model is only 14/339. However this model is
seless since they can not identify any defective modules. Therefore in
his paper, we consider FPA [46] and Kendall [47] measures used by Yu
t al. [10] . 

Kendall rank correlation coefficient ( Kendall for short) is a statistic
sed to measure the ordinal association between two measured quanti-
ies. A higher Kendall coefficient means a better ranking. Let ( x 1 , y 1 ),
 x 2 , y 2 ), ⋅⋅⋅, ( x n , y n ) be a set of observations of the joint random vari-
bles X and Y respectively. Here x i and y i denote the actual number of
efects and the predicted number of defects in i -th module respectively.
ny pair of observations ( x i , y i ) and ( x j , y j ), where i ≠ j , is defined to
e concordant if the ranks for both elements agree (i.e., both x i > x j and
166 
 i > y j or both x i < x j and y i < y j ). The pair is said to be discordant, if both
 i > x j and y i < y j or both x i < x j and y i > y j . If 𝑥 𝑖 = 𝑥 𝑗 or 𝑦 𝑖 = 𝑦 𝑗 , the pair
s neither concordant nor discordant. The Kendall coefficient 𝜏 can be
efined as: 

= 

# concordant pairs − # discordant pairs 

𝑛 ( 𝑛 − 1)∕2 
(3)

FPA (Fault-Percentile-Average) was previously proposed by Weyuker
t al. [46] . Supposing that the ranking results of the k modules for a
pecific method are f 1 , f 2 , ⋅⋅⋅, f k . If the i -th module has n i defects, the
otal number of defects are 𝑛 = 𝑛 1 + 𝑛 2 + ⋯ + 𝑛 𝑘 . The proportion of the
ctual defects in the top m predicted modules to the whole defects is: 

 ( 𝑚 ) = 

𝑘 ∑
𝑖 = 𝑘 − 𝑚 +1 

𝑛 𝑖 

𝑛 
(4)

Then FPA can be computed as: 

 𝑃 𝐴 = 

1 
𝑘 

𝑘 ∑
𝑚 =1 

𝑝 ( 𝑚 ) (5)

It is not hard to find that a higher FPA means a better ranking, which
he modules with more defects are ranked in the top. 

.3. Performance evaluation scenarios 

In a recent study [10] , Yu et al. merged the different versions of
he same project as a dataset and then used 10-fold cross-validation to
valuate the performance of SDNP methods. However, this experimental
etting is not reasonable, since randomly partitioning the dataset may
ause a model to use future knowledge, which should not be known at
he time of model construction, to predict modules in the past [23] . 

In this paper, we consider three different performance evaluation
cenarios (i.e., within-version, cross-version, and cross-project). These
hree scenarios do not have the issue in the previous study [10] and
hese scenarios are used in previous SDNP studies [17,19–21,44] . In
articular, (1) In the within-version defect prediction scenario, we con-
iders 5 × 5-fold cross validation. In particular, for a target version of
 given project, we split the dataset into 5 folds of approximately equal
ize and each fold has a similar class distribution. 4 folds are used as
he training set to train the model, while the remaining fold is used as
he test set to test the performance of the model. This cross-validation is



X. Chen et al. Information and Software Technology 106 (2019) 161–181 

Fig. 1. Example for Illustrating Three Different Performance Evaluation Scenarios. 
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Table 5 

Cliff’s 𝛿 and Corresponding Effectiveness 

Level [49] . 

Cliff’s 𝛿 Effectiveness Level 

| 𝛿| < 0.147 Negligible 

0.147 ≤ | 𝛿| < 0.33 Small 

0.33 ≤ | 𝛿| < 0.474 Medium 

0.474 ≤ | 𝛿| Large 

4

 

o  

[  

f  

u  

F  

a  

K  

t  

r  

r
 

m  

a  

p  

f  

s  

o  
epeated 5 times so that each fold is used exactly once as the test data.
he entire 5-fold cross validation process is then repeated 5 times to
lleviate possible sampling bias in random splits 2 (2) For a target ver-
ion of a given project, the cross-version defect prediction scenario uses
ata from the versions developed before the current version in the same
roject as the training set. (3) For a target version of a given project, the
ross-project defect prediction uses data from all the versions of another
roject as the training set. Notice that SMOTEND method or SMOTEND
ethod optimized by using differential evolutionary is only applied to

he training set and not to the test set. 
We use an example shown in Fig. 1 to illustrate these three differ-

nt scenarios. If we use ant-1.7 as the test set (i.e., the target version),
or the within-version defect prediction, we consider 5 × 5-fold cross
alidation. For each split, we use 80% as the training set and the re-
aining 20% as the test set. This split process is repeated 25 times. For

he cross-version scenario, we use data set based on ant-1.3 to ant-1.6
s the training set. For the cross-project scenario, if we choose xerces
roject, we will use datasets based on xerces-1.2 to xerces-1.3 as the
raining set. Obviously, we can choose all the versions of other project
such as camel, ivy, etc) as the training set in this scenario. 

In our empirical studies, we do not consider all the versions as our
arget version. First we do not consider the first version for each project
ince they can not be used for the cross-version scenario. Then we do not
hoose the versions, whose class imbalance rate is too low, such as ivy-
.4. Finally, we choose 15 versions as our target versions. In particular,
or ant project, we choose three versions (i.e., 1.5, 1.6 and 1.7). For
amel project, we choose three versions (i.e., 1.2, 1.4 and 1.6). For ivy
roject, we only choose 2.0 version. For jedit project, we choose three
ersions (i.e., 4.0, 4.1 and 4.2). For synapse project, we choose two
ersions (i.e., 1.1 and 1.2). For xalan project, we choose two versions
i.e., 2.5 and 2.6). For xerces, we only choose 1.3 version. 
2 Notice that the random number seed is different for each dataset split. 
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.4. Statistical analysis method 

To rank all the different supervised methods and unsupervised meth-
ds, we use Scott-Knott test, which is recommended by Ghotra et al.
48] . Scott–Knott test is used to examine whether some methods outper-
orm others and generates a global ranking of these methods. In partic-
lar, Scott-Knott test performs the grouping process in a recursive way.
irstly, Scott-Knott test uses a hierarchical cluster analysis to partition
ll the methods into two ranks based on the mean performance ( FPA or
endall ). Then if the divided ranks are significantly different, Scott-Knott

est is recursively executed again within each rank to further divide the
anks. When ranks can no longer be divided into statistically distinct
anks, the test will terminate. 

We use Wilcoxon signed-rank test to examine whether the perfor-
ance difference between two methods are statistically significant. We

lso use the Benjamini-Hochberg (BH) procedure to adjust p -values if we
erform multiple comparisons. Then if the test shows a significant dif-
erence, we compute Cliffs 𝛿, which is a non-parametric effect size mea-
ure, to examine whether the magnitude of the difference is substantial
r not. The meaning of different Cliffs 𝛿 value and their corresponding
nterpretation are shown in Table 5 . In summary, a method performs
ignificantly better or worse than another method, if BH corrected p -
alue is less than 0.05 and the effectiveness level is not negligible based
n Cliff’s 𝛿. While the difference between two methods is not signifi-
ant, if p -value is not less than 0.05 or p -value is less than 0.05 and the
ffectiveness level is negligible. 
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Fig. 2. Comparison Results of Different Unsupervised Methods in the Cross-Version Scenario based on Scott-Knott Test. 

Table 6 

Comparison Results between Unsupervised Method LOC_D with Supervised Methods in the Within-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.186 0.186 0.126 0.167 0.203 0.201 0.150 0.167 0.153 0.184 

W/D/L ( Kendall ) 5/6/4 3/10/2 0/3/12 2/4/9 7/3/5 7/3/5 2/5/8 2/4/9 2/5/8 

#top ranks ( Kendall ) 1 1 0 0 5 4 0 0 1 4 

p value ( Kendall ) 6.34E-01 6.48E-01 1.09E-19 7.63E-03 4.12E-03 8.25E-03 2.09E-07 1.02E-02 4.16E-06 

FPA 0.757 0.758 0.672 0.729 0.763 0.765 0.727 0.721 0.734 0.757 

W/D/L ( FPA ) 3/7/5 3/10/2 0/0/15 1/2/12 5/7/3 7/5/3 1/6/8 0/8/7 2/4/9 

#top ranks ( FPA ) 3 2 0 0 4 2 1 0 1 4 

p value ( FPA ) 8.52E-01 7.07E-01 7.86E-31 2.02E-05 3.61E-01 2.50E-01 8.99E-05 8.32E-07 2.56E-03 

Table 7 

Comparison Results between Unsupervised Method LOC_D with Supervised Methods in the Cross-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.156 0.165 0.094 0.147 0.164 0.159 0.143 0.123 0.149 0.182 

W/D/L ( Kendall ) 4/1/10 6/0/9 1/1/13 3/1/11 7/0/8 5/0/10 4/0/11 3/0/12 6/0/9 

#top ranks ( Kendall ) 0 0 0 0 5 2 1 0 1 6 

p value ( Kendall ) 3.30E-01 5.20E-01 2.64E-03 2.72E-01 6.04E-01 4.43E-01 2.21E-01 4.01E-02 3.73E-01 

FPA 0.734 0.744 0.656 0.705 0.730 0.729 0.709 0.672 0.720 0.759 

W/D/L ( FPA ) 6/0/9 6/0/9 0/0/15 1/0/14 7/0/8 5/0/10 2/0/13 1/0/14 6/0/9 

#top ranks ( FPA ) 1 1 0 1 6 1 0 0 0 6 

p value ( FPA ) 4.68E-01 7.56E-01 1.13E-03 8.52E-02 3.10E-01 3.10E-01 1.01E-01 2.13E-02 2.72E-01 

168 
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Fig. 3. Comparison Result between Supervised Methods and Unsupervised Method LOC_D in the Within-version Defect Prediction Scenario based on Scott-Knott 

Test, Notice the Larger the FPA / Kendall Value, the Better the Performance of the Method. 

Fig. 4. Comparison Result between Supervised Methods and Unsupervised Method LOC_D in the Cross-version Defect Prediction Scenario based on Scott-Knott Test. 
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3 The results are same for the cross-project scenario, since these two scenarios 

use all the data of the target version as the test data. 
4 A boxplot consists of five most important sample percentiles: the sample 

minimum, the lower quartile, the median, the upper quartile and the sample 
. Result analysis 

.1. Result analysis for RQ1 

RQ1: Can supervised methods using SMOTEND perform better

han unsupervised methods? 

To answer this RQ, we first identify these unsupervised methods with
est performance. As discussed in Section 3 , we considered 40 unsuper-
ised methods in total by considering two different ranking strategies.
ere the method name taking A (Ascending) as the suffix indicates the
odules are ranked according to the corresponding metric value from

mall to large. In this way, the modules with smaller metric value will
e ranked higher. While the method name taking D (Descending) as the
uffix indicates the modules are ranked according to the correspond-
m

169 
ng metric value from large to small. In this way, the modules with
arger metric value will be ranked higher. Considering the cross-version
cenario 3 , we use Scott-Knott test to group these methods into statisti-
ally distinct ranks. The results are shown in Fig. 2 . The dotted lines
epresent groups divided by using the Scott-Knott test. All methods are
rdered based on their mean ranks. The distribution of FPA and Kendall

s shown using boxplot 4 The blue label denotes unsupervised methods
aximum. 
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Table 8 

Comparison Results between Unsupervised Method LOC_D with Supervised Methods in the Cross-project Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.134 0.147 0.072 0.113 0.135 0.137 0.108 0.116 0.117 0.182 

W/D/L ( Kendall ) 13/2/75 22/1/67 0/1/89 0/0/90 4/0/86 2/1/87 5/0/85 1/0/89 6/1/83 

#top ranks ( Kendall ) 8 17 0 0 1 2 0 0 1 64 

p value ( Kendall ) 3.27E-05 2.82E-03 6.02E-21 6.55E-09 4.74E-05 6.35E-05 7.16E-10 3.91E-09 2.19E-08 

FPA 0.718 0.730 0.622 0.682 0.710 0.711 0.683 0.685 0.692 0.759 

W/D/L ( FPA ) 16/0/74 26/3/61 0/0/90 2/0/88 2/0/88 6/0/84 5/1/84 0/1/89 9/2/79 

#top ranks ( FPA ) 8 21 0 2 1 3 1 0 1 57 

p value ( FPA ) 2.25E-03 3.78E-02 5.98E-22 2.58E-09 1.92E-05 3.79E-05 6.40E-08 2.58E-09 8.37E-07 

Fig. 5. Comparison Results between Supervised Methods and Unsupervised Method LOC_D in the Cross-project Defect Prediction Scenario based on Scott-Knott Test. 
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sing the ascending strategy and the black label denotes unsupervised
ethods using the descending strategy. 

It is not hard to find that when considering FPA and Kendall perfor-
ance measures, unsupervised methods using the descending ranking

trategy perform better than unsupervised methods using the ascend-
ng ranking strategy. These findings are different from the findings in
tudies of just-in-time defect prediction and file-level defect prediction
hen considering effort-aware performance measures [6,9] . For these
nsupervised methods using the descending ranking strategy, we fur-
her identify two methods (i.e., RFC_D and LOC_D), which can achieve
he best performance. When using Wilcoxon signed-rank test to compare
FC_D method with LOC_D method, the BH corrected p -Value is 0.72
nd 0.91 respectively for FPA and Kendall measures. It shows that there
s no significant difference in performance between these two methods.
imilar results can be also found in the within-version scenario. Since
he LOC metric for the program modules can be more easily measured
han RFC metric, we choose LOC_D as the representative method for un-
upervised learning methods and then compare this method with state-
f-the-art supervised methods. 

In three different scenarios, we all use SMOTEND to solve class im-
alance problem in the datasets. Moreover, in the cross-project defect
rediction scenario, we consider Burak filter method [50] to alleviate
he distribution difference between the source project and the target
roject [51] . In particular, Burak filter method [50] can choose relevant
odules according to the characteristic of the target project. The results

f the Scott-Knott test between LOC_D and these 9 supervised methods
an be found in Fig. 3 , Fig. 4 and Fig. 5 in three different scenarios. In
hese figures, the horizontal red dashed lines indicate the median value
170 
f the LOC_D method, which is to help visualize the median differences
etween LOC_D and different supervised methods. 

Based on these figures, we can find that in the within-version sce-
ario when considering FPA , RF method performs best, however, LOC_D
nd RF are in the same group. While in the cross-version scenario and
he cross-project scenario, LOC_D surprisedly performs best. The advan-
age is more obvious in the cross-project scenario. 

The detailed comparison results between unsupervised method
OC_D and supervised methods can be found in Table 6 , Table 7 and
able 8 for three different scenarios. These tables show the mean Kendall

nd FPA , Win/Draw/Loss (W/D/L) results based on Kendall and FPA ,
nd # top ranks based on Kendall and FPA . In the within-version sce-
ario, W/D/L results show the number of datasets, on which the cor-
esponding method performs significantly better than, the same as,
orse than the LOC_D method by using Wilcoxon signed-rank test, since
 × 5-fold cross validation is applied for each dataset. In the remaining
wo scenarios, W/D/L results show the number of cases, on which the
orresponding method performs better than, the same as, worse than
he LOC_D method. # top ranks can count #top ranks for each method.
otice in some cases, there may exist multiple methods in the top

ank. Finally, we use Wilcoxon signed-rank test to examine whether the
erformance difference between the corresponding method and LOC_D
ethod is statistically significant. The BH corrected p -Value is shown

n rows p -value ( Kendall ) and p -value ( FPA ). If p -Value is smaller than
.05, we further analyze Cliff’s 𝛿 and set a shadow on the cell if its value
s negligible. 

(1) In the within-version scenario, when considering mean Kendall

alue, LOC_D performs better than 55.6% (5/9) supervised methods.
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Fig. 6. Tuned Value Distribution for Three Parameters of SMOTE after using 

DE When Optimized in the Cross-version Scenario for FPA Measure. 
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he mean Kendall value of LOC_D is 0.184. The best method is GBR
nd its mean Kendall value is 0.203. Based on W/D/L ( Kendall ) anal-
sis, LOC_D achieves at least 50% wins (or draws) when comparing
o all the supervised methods. In most cases, LOC_D achieves at least
6.7% (10/15) wins (or draws). When counting #top ranks ( Kendall ),
BR is in the first place, which can achieve top rank in 5 cases. LOC_D
171 
nd RF are in the second place, which can achieve top rank in 4 cases.
hen considering mean FPA value, LOC_D performs better than 55.6%

5/9) supervised methods. The mean FPA value of LOC_D is 0.757. The
est method is RF and its mean FPA value is 0.765. Based on W/D/L
 FPA ) analysis, LOC_D achieves at least 50% wins (or draws) when com-
aring to all the supervised methods. In most cases, LOC_D achieves
t least 66.7% (10/15) wins (or draws). When counting #top ranks
 FPA ), both LOC_D and GBR are in the first place, which can achieve
op rank in 4 cases. Based on BH corrected p -Value and Cliff’s 𝛿, we
nd that based on Kendall , LOC_D performs significantly better than 3
upervised methods (i.e., DTR, ABR2_LR and ABR2_BRR). While the re-
aining supervised methods do not perform significantly better than

OC_D. Based on FPA , LOC_D performs significantly better than 4 su-
ervised methods (i.e., DTR, NNR, ABR2_LR and ABR2_DTR). While the
emaining supervised methods do not perform significantly better than
OC_D. 

(2) In the cross-version scenario, when considering mean Kendall

alue, LOC_D performs better than all the supervised methods. The mean
endall value of LOC_D is 0.182. Based on W/D/L ( Kendall ) analysis,
OC_D achieves at least 50% wins (or draws) when comparing to all the
upervised methods. In most cases, LOC_D achieves at least 60% (9/15)
ins (or draws). When counting #top ranks ( Kendall ), LOC_D is in the
rst place, which can achieve top rank in 6 cases. GBR is in the sec-
nd place, which can achieve top rank in 5 cases. When considering
ean FPA value, LOC_D performs better than all the supervised meth-

ds. The mean FPA value of LOC_D is 0.759. Based on W/D/L ( FPA )
nalysis, LOC_D achieves at least 50% wins (or draws) when comparing
o all the supervised methods. In most cases, LOC_D achieves at least
0% (9/15) wins (or draws). When counting #top ranks ( FPA ), both
OC_D and GBR are in the first place, which can achieve top rank in 6
ases. Based on BH corrected p -Value and Cliff’s 𝛿, we find that based
n Kendall , LOC_D performs significantly better than 2 supervised meth-
ds (i.e., DTR and ABR2_DTR). While the remaining supervised methods
o not perform significantly better than LOC_D. Based on FPA , LOC_D
erforms significantly better than 3 supervised methods (i.e., DTR, NNR
nd ABR2_DTR). While the remaining supervised methods do not per-
orm significantly better than LOC_D. 

(3) In the cross-project scenario, when considering mean Kendall

alue, LOC_D performs better than all the supervised methods. The mean
endall value of LOC_D is 0.182. Based on W/D/L ( Kendall ) analysis,
OC_D achieves at least 50% wins (or draws) when comparing to all
he supervised methods. In most cases, LOC_D achieves at least 74.4%
67/90) wins (or draws). When counting #top ranks ( Kendall ), LOC_D
s in the first place, which can achieve top rank in 64 cases. When con-
idering mean FPA value, LOC_D performs better than all the supervised
ethods. The mean FPA value of LOC_D is 0.759. Based on W/D/L ( FPA )

nalysis, LOC_D achieves at least 50% wins (or draws) when comparing
o all the supervised methods. In most cases, LOC_D achieves at least
0% (63/90) wins (or draws). When counting #top ranks ( FPA ), both
OC_D and GBR are in the first place, which can achieve top rank in
7 cases. Based on BH corrected p -Value and Cliff’s 𝛿, we find LOC_D
erforms significantly better than all the supervised methods based on
hether Kendall or FPA . 

Summary for RQ1: Unsupervised method LOC_D can perform signifi-
cantly better than or the same as state-of-the-art supervised methods
using SMOTEND. 

.2. Result analysis for RQ2 

RQ2: Can using differential evolutionary for SMOTEND improve

he performance of supervised methods? 

For this RQ, we first analyze whether the tuned parameter values are
ifferent from the default parameter values. Then we want to analyze
hether there is any benefit in tuning the parameters for SMOTEND by
sing differential evolutionary. 
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Fig. 7. The Improvement Ratio when ivy-2.0 is set as the Target Version in the 

Cross-project Scenario. 
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As discussed before, the default values for parameters (i.e., k, m, r )
f SMOTEND are 5, 6, 2 respectively. Fig. 6 shows the distribution of
alues for these parameters in the cross-version scenario using boxplot
hen optimized for FPA measure. It is not hard to find that most of tuned
arameter values are different from their default values. For example,
edian of parameter k ’s value is larger than 5 in most cases. Therefore,
sing default value for parameters of SMOTEND is not recommended
or SDNP problem either. Similar results can be also found in other two
erformance evaluation scenarios. 

Fig. 7 shows the performance improvement ratio when ivy-2.0 is
et as the target version in the cross-project scenario when considering
oth Kendall measure and FPA measure. For each subfigure, x -axis shows
ifferent supervised methods and y -axis shows performance improve-
ent ratio computed by ( 𝑣𝑎𝑙 𝑢𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 − 𝑣𝑎𝑙 𝑢𝑒 𝑜𝑟𝑖𝑔𝑛𝑖𝑎𝑙 )∕ 𝑣𝑎𝑙 𝑢𝑒 𝑜𝑟𝑖𝑔𝑛𝑖𝑎𝑙 . Here

alue optimize denotes the performance after using DE and value orignial de-
otes the performance before using DE. In this figure, different colors
ndicate that different projects are selected as source projects. It is not
ard to find that using DE for optimizing parameter values of SMOTEND
an improve the performance in most cases. 

Fig. 8 , Fig. 9 and Fig. 10 use boxplot to show the performance of
upervised methods not using DE and supervised methods using DE in
hree different scenarios by considering all the target versions. In these
igures, the method name followed by DE suffix denotes this method
sing DE to optimize the parameters for SMOTEND. It is not hard to find
hat using DE can improve the performance of SDNP whether based on
PA measure or Kendall measure. From these figures, we can roughly
172 
nd that LOC_D can perform significantly better than or the same as
hese supervised methods using DE. 

Detailed comparison results can be found in Table 9 , Table 10 and
able 11 . These tables record the mean value of Kendall and FPA for
orresponding methods not using DE or using DE (the results are shown
n parentheses). Then W/D/L analysis presents the number of cases, on
hich the corresponding method using DE performs (significantly) bet-

er than, the same as, the worse than the corresponding method not
sing DE. we use Wilcoxon signed-rank test to examine whether the per-
ormance difference between the corresponding method using DE and
he method not using DE is statistically significant. The BH corrected
 -Value is shown in rows p -value ( Kendall ) and p -value ( FPA ). Based
n these tables, the BH corrected p -Value shows that using DE can per-
orm significantly better than the corresponding method not using DE.
ean value and W/D/L results of Kendall and FPA further verify the ef-

ectiveness of using DE to optimize the parameters of SMOTEND. These
onclusions are consistent with the findings found by the previous study
11] . 

Summary for RQ2: In most cases, after using DE, the tuned value of
parameter does not keep consistent with its default value and this
optimization can significantly improve the performance of SDNP in
most cases. 

.3. Result analysis for RQ3 

RQ3: Can supervised methods using DE perform better than un-

upervised methods? 

The result of the Scott-Knott test between LOC_D and these 9 super-
ised methods using DE can be found in Fig. 11 , Fig. 12 and Fig. 13 in
hree different scenarios. In these figures, the horizontal red dashed lines
ndicate the median value of the LOC_D method, which is to help visu-
lize the median differences between LOC_D and different supervised
ethods using DE. 

The detailed comparison results between unsupervised method
OC_D and supervised methods (including mean value, W/D/L result,
 top ranks and p -Value) can be found in 12 , Table 13 and Table 14 in

hree different scenarios. 
(1) In the within-version scenario, when considering mean Kendall

alue, LOC_D performs better than 33.3% (3/9) supervised methods.
he mean Kendall value of LOC_D is 0.184. The best method is RF and

ts mean Kendall value is 0.222. Based on W/D/L ( Kendall ) analysis,
OC_D achieves at least 50% wins (or draws) when comparing to al-
ost all the supervised methods. In most cases, LOC_D achieves at least
3.3% (8/15) wins (or draws). When counting #top ranks ( Kendall ), RF
s in the first place, which can achieve top rank in 6 cases. LOC_D is
n the third place, which can achieve top rank in 2 cases. When con-
idering mean FPA value, LOC_D performs better than 55.6% (5/9) su-
ervised methods. The mean FPA value of LOC_D is 0.757. The best
ethod is RF and its mean FPA value is 0.786. Based on W/D/L ( FPA )

nalysis, LOC_D achieves at least 50% wins (or draws) when comparing
o almost all the supervised methods. In most cases, LOC_D achieves at
east 60% (9/15) wins (or draws). When counting #top ranks ( FPA ),
F is in the best place, which can achieve top rank in 8 cases. Based
n BH corrected p -Value and Cliff’s 𝛿, we find that based on Kendall ,
OC_D performs significantly better than 1 supervised method (i.e.,
TR) and performs significantly worse than 2 supervised methods (i.e.,
BR and RF). While the remaining supervised methods do not perform

ignificantly better than LOC_D. Based on FPA , LOC_D performs signifi-
antly better than 1 supervised methods (i.e., DTR) and performs signif-
cantly worse than 2 supervised methods (i.e., GBR and RF). While the
emaining supervised methods do not perform significantly better than
OC_D. 

(2) In the cross-version scenario, when considering mean Kendall

alue, LOC_D performs better than all the supervised methods. The mean
endall value of LOC_D is 0.182. Based on W/D/L ( Kendall ) analysis,
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Table 9 

Comparison Results of Supervised methods using DE vs Supervised Methods not using DE in the Within-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR 

Kendall 0.186( 0.197 ) 0.186( 0.194 ) 0.126( 0.16 ) 0.167( 0.186 ) 0.203( 0.218 ) 0.201( 0.222 ) 0.15( 0.169 ) 0.167( 0.186 ) 0.153( 0.175 ) 

W/D/L ( Kendall ) 0/1/14 0/2/13 0/1/14 0/1/14 0/2/13 0/1/14 0/0/15 0/1/14 0/0/15 

p value ( Kendall ) 4.31E-02 1.26E-01 2.16E-10 8.30E-04 1.99E-02 5.40E-04 5.74E-04 3.23E-03 1.05E-04 

FPA 0.757( 0.768 ) 0.758( 0.769 ) 0.672( 0.721 ) 0.729( 0.754 ) 0.763( 0.781 ) 0.765( 0.786 ) 0.727( 0.752 ) 0.721( 0.744 ) 0.734( 0.755 ) 

W/D/L ( FPA ) 0/2/13 0/2/13 0/0/15 0/2/13 0/2/13 0/1/14 0/1/14 0/1/14 0/1/14 

p value ( FPA ) 1.05E-01 1.11E-01 7.19E-13 6.69E-05 2.03E-03 1.50E-04 7.63E-04 1.53E-03 4.36E-03 

Table 10 

Comparison Results of Supervised methods using DE vs Supervised Methods not using DE in the Cross-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR 

Kendall 0.156( 0.165 ) 0.165( 0.175 ) 0.094( 0.118 ) 0.147( 0.156 ) 0.164( 0.170 ) 0.159( 0.173 ) 0.143( 0.153 ) 0.123( 0.127 ) 0.149( 0.164 ) 

W/D/L ( Kendall ) 4/0/11 1/1/13 0/0/15 3/0/12 6/0/9 2/1/12 4/0/11 4/0/11 3/0/12 

p value ( Kendall ) 2.56E-02 3.05E-04 6.10E-05 8.54E-04 4.13E-02 1.53E-03 4.13E-02 1.07E-01 1.16E-03 

FPA 0.734( 0.74 ) 0.744( 0.753 ) 0.656( 0.672 ) 0.705( 0.719 ) 0.73( 0.736 ) 0.729( 0.747 ) 0.709( 0.727 ) 0.672( 0.689 ) 0.72( 0.735 ) 

W/D/L ( FPA ) 5/1/9 2/1/12 3/0/12 1/0/14 8/0/7 0/0/15 1/1/13 3/0/12 1/0/14 

p value ( FPA ) 1.07E-01 6.71E-03 1.25E-02 1.83E-04 4.89E-01 6.10E-05 2.01E-03 3.36E-03 4.27E-04 

Table 11 

Comparison Results of Supervised methods using DE vs Supervised Methods not using DE in the Cross-project Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR 

Kendall 0.134( 0.150 ) 0.147( 0.162 ) 0.072( 0.098 ) 0.113( 0.127 ) 0.135( 0.151 ) 0.137( 0.153 ) 0.108( 0.129 ) 0.116( 0.129 ) 0.117( 0.139 ) 

W/D/L ( Kendall ) 12/6/72 8/3/79 11/0/79 11/3/76 10/4/76 19/4/67 13/1/76 21/1/68 11/0/79 

p value ( Kendall ) 2.04E-11 3.21E-14 1.77E-11 1.21E-13 1.42E-12 2.53E-10 1.08E-11 1.08E-08 1.68E-11 

FPA 0.718( 0.732 ) 0.730( 0.742 ) 0.622( 0.660 ) 0.682( 0.696 ) 0.710( 0.726 ) 0.711( 0.732 ) 0.683( 0.713 ) 0.685( 0.705 ) 0.692( 0.721 ) 

W/D/L ( FPA ) 8/2/80 18/7/65 24/1/65 12/1/77 14/2/74 17/1/72 12/1/77 13/1/76 17/0/73 

p value ( FPA ) 5.41E-13 1.40E-09 1.19E-08 1.27E-11 1.84E-10 1.87E-11 3.91E-13 1.60E-12 6.73E-10 

Table 12 

Results of Comparing unsupervised method LOC_D with Supervised Methods using DE in the Within-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.197 0.194 0.160 0.186 0.218 0.222 0.169 0.186 0.175 0.184 

W/D/L ( Kendall ) 7/6/2 7/7/1 1/4/10 3/8/4 8/7/0 10/5/0 5/4/6 5/4/6 6/3/6 

#top ranks ( Kendall ) 1 2 0 0 3 6 0 1 1 2 

p value( Kendall ) 1.72E-08 1.93E-08 4.45E-16 6.48E-01 1.40E-26 4.38E-33 1.92E-04 3.88E-01 4.60E-02 

FPA 0.768 0.769 0.721 0.754 0.781 0.786 0.752 0.744 0.755 0.757 

W/D/L ( FPA ) 6/7/2 6/8/1 0/6/9 3/7/5 9/6/0 11/3/1 3/7/5 2/10/3 4/7/4 

#top ranks ( FPA ) 1 4 0 0 2 8 0 0 1 0 

p value ( FPA ) 6.99E-08 2.71E-11 4.23E-20 4.40E-02 1.48E-20 8.08E-29 3.16E-01 3.62E-03 9.65E-01 

Table 13 

Results of Comparing unsupervised method LOC_D with Supervised Methods using DE in the Cross-version Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.165 0.175 0.118 0.156 0.170 0.173 0.153 0.127 0.164 0.182 

W/D/L ( Kendall ) 7/0/8 8/0/7 3/0/12 4/0/11 7/0/8 5/0/10 4/0/11 3/0/12 6/0/9 

#top ranks ( Kendall ) 0 4 0 0 4 2 0 0 0 5 

p value ( Kendall ) 2.52E-01 9.78E-01 1.53E-03 4.13E-02 3.59E-01 4.54E-01 1.81E-02 4.27E-03 1.69E-01 

FPA 0.740 0.753 0.672 0.719 0.736 0.747 0.727 0.689 0.735 0.759 

W/D/L ( FPA ) 6/0/9 9/0/6 0/0/15 3/0/12 7/0/8 6/0/9 4/0/11 2/0/13 6/0/9 

#top ranks ( FPA ) 0 4 0 0 5 2 0 0 1 3 

p value ( FPA ) 2.29E-01 8.90E-01 6.10E-05 1.81E-02 3.30E-01 4.21E-01 2.56E-02 8.54E-04 1.35E-01 

Table 14 

Results of Comparing unsupervised method LOC_D with Supervised Methods using DE in the Cross-project Defect Prediction Scenario. 

LR BRR DTR NNR GBR RF ABR2_LR ABR2_DTR ABR2_BRR LOC_D 

Kendall 0.150 0.162 0.098 0.127 0.151 0.153 0.129 0.129 0.139 0.182 

W/D/L ( Kendall ) 21/1/68 34/6/50 0/0/90 0/0/90 19/0/71 12/0/78 12/0/78 4/2/84 13/3/74 

#top ranks ( Kendall ) 8 24 0 0 9 4 0 0 2 50 

p value ( Kendall ) 1.12E-09 1.27E-03 1.77E-16 1.77E-16 8.67E-10 3.68E-13 2.94E-14 4.67E-16 3.58E-12 

FPA 0.732 0.742 0.660 0.696 0.726 0.732 0.713 0.705 0.721 0.759 

W/D/L ( FPA ) 22/1/67 36/2/52 0/0/90 2/0/88 12/2/76 10/1/79 12/1/77 4/0/86 16/0/74 

#top ranks ( FPA ) 10 22 0 2 3 7 2 0 1 45 

p value( FPA ) 1.24E-07 3.72E-03 1.77E-16 2.56E-16 8.93E-13 2.73E-13 1.10E-13 3.24E-16 1.10E-12 
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Fig. 8. Boxplot of Supervised Methods using DE and Supervised Methods without using DE in the Within-version Scenario. 
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OC_D achieves at least 50% wins (or draws) when comparing to almost
ll the supervised methods. In most cases, LOC_D achieves at least 60%
9/15) wins (or draws). When counting #top ranks ( Kendall ), LOC_D is
n the best place, which can achieve top rank in 5 cases. BRR and GBR
s in the second place, which can achieve top rank in 4 cases. When con-
idering mean FPA value, LOC_D performs better than all the supervised
ethods. The mean FPA value of LOC_D is 0.759. Based on W/D/L ( FPA )

nalysis, LOC_D achieves at least 50% wins (or draws) when comparing
o almost all the supervised methods. In most cases, LOC_D achieves at
east 60% (9/15) wins (or draws). When counting #top ranks ( FPA ),
BR is in the first place, which can achieve top rank in 5 cases. LOC_D

s in the third place, which can achieve top rank in 3 cases. Based on BH
orrected p -Value and Cliff’s 𝛿, we find that whether based on Kendall

r FPA , LOC_D performs significantly better than 4 supervised methods
i.e., DTR, NNR, ABR2_LR, and ABR2_DTR). While the remaining super-
ised methods do not perform significantly better than LOC_D. 
174 
(3) In the cross-project scenario, when considering mean Kendall

alue, LOC_D performs better than all the supervised methods. The mean
endall value of LOC_D is 0.182. Based on W/D/L ( Kendall ) analysis,
OC_D achieves at least 50% wins (or draws) when comparing to all
he supervised methods. In most cases, LOC_D achieves at least 78.9%
71/90) wins (or draws). When counting #top ranks ( Kendall ), LOC_D
s in the best place, which can achieve top rank in 50 cases. When con-
idering mean FPA value, LOC_D performs better than all the supervised
ethods. The mean FPA value of LOC_D is 0.759. Based on W/D/L ( FPA )

nalysis, LOC_D achieves at least 50% wins (or draws) when comparing
o all the supervised methods. In most cases, LOC_D achieves at least
2.2% (74/90) wins (or draws). When counting #top ranks ( FPA ), both
OC_D and GBR are in the first place, which can achieve top rank in 45
ases. Based on BH corrected p -Value and Cliff’s 𝛿, we find LOC_D per-
orms significantly better than almost all the supervised methods (except
or BRR) based on whether Kendall or FPA . 
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Fig. 9. Boxplot of Supervised Methods using DE and Supervised Methods without using DE in the Cross-version Scenario. 
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Summary for RQ3: Even LOC_D is compared with these supervised
methods using DE for optimization, previous conclusions for RQ1
still hold, especially in the cross-version scenario and cross-project
scenario. 

. Discussions 

.1. Comparing with OneWay and CBS 

In this subsection, we want to compare LOC_D with two state-of-the-
rt methods (i.e., OneWay [7] and CBS [8] ) proposed in recent effort-
ware just-in-time defect prediction studies. Since there exist some
ifferences between just-in-time defect prediction and software defect
umber prediction, we illustrate these two methods in the context of
DNP. 

OneWay method [7] is a simple supervised method. For SDNP prob-
em, this method identifies the best method from all the unsupervised
ethods (introduced in Subsection 3.2 ) based on the analysis of the
175 
raining data when considering FPA measure or Kendall measure, and
hen applies this best unsupervised method to the testing data. Since
e consider unsupervised methods with different ranking strategies, we
se OneWay_A to denote OneWay method based on unsupervised meth-
ds using the ascendant ranking strategy and use OneWay_D to denote
neWay method based on unsupervised methods using the descendent

trategy. 
CBS method [8] is also a simple but improved supervised method.

his method first builds a classifier by using Logistic regression to iden-
ify defective modules. Then it sorts the identified defective modules
y a specific ranking strategy. For CBS method, we also consider SMO-
END method optimized by using differential evolutionary when build-

ng the classifier. Similar to OneWay method, we use CBS_A to denote
BS method, which uses the ascendant ranking strategy in the identified
efective modules and use CBS_D to denote CBS method, which uses the
escendent ranking strategy. 

Final results for three different scenarios can be found in Fig. 14
nd Figure 15 respectively. In these figures, the horizontal red dashed
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Fig. 10. Boxplot of Supervised Methods using DE and Supervised Methods without using DE in the Cross-project Scenario. 
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ines indicate the median value of the LOC_D method, which is to help
isualize the median differences between LOC_D and two state-of-the-
rt methods. The detailed comparison results can be found in Table 15 ,
able 16 and Table 17 . From these figures and tables, we can find that in
he within-version scenario, LOC_D can perform significantly better than
BS_A and OneWay_A. While LOC_D has the similar performance with
BS_D and OneWay_D. In the cross-version scenario, LOC_D can perform
ignificantly better than CBS_A, CBS_D, OneWay_A. While LOC_D has
he similar performance with OneWay_D. In the cross-project scenario,
OC_D can perform significantly better than all the methods (except for
neWay_D when considering FPA measure). These findings are in con-

istent with the conclusions by Fu and Menzies [7] . 

.2. The usage of unsupervised methods 

The previous study [14] showed that the majority (approximately
0%) of defects are contained in a small number (approximately 20%) of
176 
rogram modules. Therefore, to show the effectiveness of unsupervised
ethods in actual software testing, we assume that only 20% modules

an be used to perform code inspection and we use Recall @20% to de-
ote the ratio of detected defects. We use a simple example to illustrate
ecall @20% measure. Suppose there are 1000 modules in the project
nd this project contains 20 defects. If we inspect 200 modules accord-
ng to the ranked list by a specific SDNP method, we can find 10 defects.
hen the value of Recall @20% of this SDNP method is 10/20 = 50%.
he comparison results in the cross-version scenario can be found in
ig. 16 and the horizontal red dashed line indicates the median value of
he LOC_D method. Since supervised methods using DE can be optimized
or two different measures, the supervised methods with suffix F denote
he methods are optimized for FPA measure and the supervised meth-
ds with suffix K denote the methods are optimized for Kendall measure.
rom this figure, we can find that LOC_D method can find more defects
hen compared to other supervised methods. The similar conclusions

an be found in other two scenarios. 
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Fig. 11. Comparison Result between Supervised Methods using DE and Unsupervised Method LOC_D in the within-version Defect Prediction Scenario based on 

Scott-Knott Test. 

Fig. 12. Comparison Result between Supervised Methods using DE and Unsupervised Method LOC_D in the Cross-version Defect Prediction Scenario based on 

Scott-Knott Test. 

Table 15 

Comparison results between unsupervised method LOC_D with CBS and OneWay in 

the within-version Scenario. 

CBS_A CBS_D OneWay_A OneWay_D LOC_D 

Kendall 0.140 0.176 0.146 0.192 0.184 

W/D/L ( Kendall ) 0/6/9 3/5/7 0/5/10 6/7/2 

# Top Ranks ( Kendall ) 0 3 0 7 7 

p value ( Kendall ) 1.43E-30 1.71E-04 8.10E-33 7.73E-09 

FPA 0.686 0.739 0.725 0.763 0.757 

W/D/L ( FPA ) 0/2/13 2/6/7 0/5/10 4/9/2 

# Top Ranks ( FPA ) 0 2 0 7 8 

p value ( FPA ) 1.46E-41 9.30E-05 5.21E-30 7.53E-06 
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Fig. 13. Comparison Result between Supervised Methods using DE and Unsupervised Method LOC_D in the Cross-project Defect Prediction Scenario based on 

Scott-Knott Test. 

Fig. 14. Comparison Result between LOC_D with OneWay and CBS methods based on Scott-Knott Test When Considering FPA measure. 

Table 16 

Comparison results between unsupervised method LOC_D with CBS and OneWay in 

the cross-version Scenario. 

CBS_A CBS_D OneWay_A OneWay_D LOC_D 

Kendall 0.103 0.145 0.129 0.171 0.182 

W/D/L ( Kendall ) 0/0/15 3/0/12 1/0/14 6/4/5 

# Top Ranks ( Kendall ) 0 2 1 8 7 

p value ( Kendall ) 6.10E-05 2.62E-03 1.83E-04 9.78E-01 

FPA 0.649 0.714 0.713 0.731 0.759 

W/D/L ( FPA ) 0/0/15 2/0/13 2/0/13 6/3/6 

# Top Ranks ( FPA ) 0 1 1 8 8 

p value ( FPA ) 6.10E-05 1.16E-03 1.16E-03 3.27E-01 
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Fig. 15. Comparison Result between LOC_D with OneWay and CBS methods based on Scott-Knott Test When Considering Kendall measure. 

Table 17 

Comparison Results between Unsupervised Method LOC_D with CBS and OneWay in 

the Cross-project Scenario. 

CBS_A CBS_D OneWay_A OneWay_D LOC_D 

Kendall 0.087 0.133 0.122 0.161 0.182 

W/D/L ( Kendall ) 1/0/89 5/1/84 5/0/85 26/29/35 

# Top Ranks ( Kendall ) 0 5 2 52 60 

p value ( Kendall ) 1.83E-16 1.68E-15 6.58E-16 7.45E-03 

FPA 0.636 0.703 0.705 0.739 0.759 

W/D/L ( FPA ) 0/0/90 4/3/83 10/0/80 31/27/32 

# Top Ranks ( FPA ) 0 4 5 51 51 

p value ( FPA ) 1.77E-16 1.21E-15 4.18E-14 1.16E-01 

Fig. 16. Comparison Results between LOC_D and Supervised Methods When 

Considering Recall @20% Measure. 
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5 http://scikit-learn.org/ 
. Threats to validity 

In this subsection, we mainly discuss the potential threats to validity
f our empirical studies. 

Threats to internal validity are mainly concerned with the uncon-
rolled internal factors that might have influence on the experimental
esults. The main internal threat is the potential faults introduced during
179 
ur method implementation. To reduce this threat, we use test cases to
erify the correctness of our implementation. Moreover, for regression
ased supervised methods (such as LR, BRR, DTR), we use the imple-
entation of these methods supported by mature third-party library,

uch as packages from scikit-learn 5 . 
Threats to external validity are about whether the observed exper-

mental results can be generalized to other subjects. To alleviate this
hreat, we consider datasets widely used by previous studies for SDNP
9,10,17,20,21] . 

Threats to conclusion validity are mainly concerned with inappro-
riate use of statistical techniques. In this paper, We use BH corrected
 -Value and Cliff’s 𝛿 to examine whether the performance difference be-
ween two methods are statistically significant. Moreover, Scott-Knott
est is used to examine whether some methods outperform others and
reate a global ranking of these methods. 

Threats to construct validity are about whether the performance
easures used in the empirical studies reflect the real-world situation. In

his paper, we mainly consider FPA and Kendall rank correlation coeffi-
ient [10] , which can effectively avoid the disadvantage of other perfor-
ance measures, such as AAE . In the future, Spearman’s rank correlation

oefficient and cost effectiveness graph [52] can be further investigated.

http://scikit-learn.org/
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. Conclusion and future work 

Software defect number prediction can be used to rank the modules
nd then optimize the allocation for testing resources. To the best of
ur knowledge, this is the first paper to make a comparison for these
wo different types of methods (i.e., supervised methods and unsuper-
ised methods). In our empirical studies, we consider 7 real open-source
rojects with 24 versions in total, use FPA and Kendall as our perfor-
ance measures, and consider three performance evaluation scenarios

i.e., within-version scenario, cross-version scenario, and cross-project
cenario). Final results show that LOC_D can perform significantly bet-
er than or the same as these supervised methods using SMOTEND. Later
otivated by a recent study conducted by Agrawla and Menzies [11] ,
e apply differential evolutionary for optimizing parameters used by
MOTEND and find that using DE can effectively improve the perfor-
ance of these supervised methods too. Finally, we continue to compare

OC_D with these optimized supervised methods using DE, and previous
onclusions still hold, especially in the cross-version and cross-project
cenarios. Based on the above study, we suggest that researchers need
o measure the modules using the LOC metric when gathering datasets
nd then use the unsupervised method LOC_D as the baseline method
or future research on software defect number prediction problem, since
his method has relatively low computation cost, is easy to implement,
nd has a satisfactory performance. 

In the future, we want to extend our research in several ways. First
e want to investigate the generalization of our empirical studies by

onsidering more datasets from open-source projects and commercial
rojects. Secondly we want to investigate whether more complicated
nsupervised methods (such as [53,54] ) can further improve the per-
ormance. Finally, we want to resort to other novel supervised methods,
uch as using multi-objective optimization [55] to construct the model
r using feature selection [26,56–58] , which is used to identify and re-
ove irrelevant features and redundant features, to further improve the
erformance of these supervised methods. 
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