The Journal of Systems and Software 152 (2019) 215-238

The Journal of Systems and Software

Contents lists available at ScienceDirect

SOFTWARE

-

journal homepage: www.elsevier.com/locate/jss

An empirical study on pareto based multi-objective feature selection n
for software defect prediction e

Chao Ni? Xiang Chen®"* Fangfang Wu?, Yuxiang Shen®, Qing Gu®*

aState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
b School of Computer Science and Technology, Nantong University, Nantong, China

ARTICLE INFO

ABSTRACT

Article history:

Received 16 August 2018
Revised 8 February 2019
Accepted 14 March 2019
Available online 15 March 2019

MSC:
XX-XX
XX-XX

Keywords:

Software defect prediction

Search based software engineering
Feature selection

Multi-Objective optimization
Empirical study

The performance of software defect prediction (SDP) models depend on the quality of considered soft-
ware features. Redundant features and irrelevant features may reduce the performance of the constructed
models, which require feature selection methods to identify and remove them. Previous studies mostly
treat feature selection as a single objective optimization problem, and multi-objective feature selection
for SDP has not been thoroughly investigated. In this paper, we propose a novel method MOFES (Multi-
Objective FEature Selection), which takes two optimization objectives into account. One optimization ob-
jective is to minimize the number of selected features, this objective is related to the cost analysis of this
problem. Another objective is to maximize the performance of the constructed SDP models, this objective
is related to the benefit analysis of this problem. MOFES utilizes Pareto based multi-objective optimiza-
tion algorithms (PMAs) to solve this problem. In our empirical study, we design and conduct experiments
on RELINK and PROMISE datasets, which are gathered from real open source projects. Firstly, we analyze
the influence of different PMAs on MOFES and find that NSGA-II can achieve the best performance on
both datasets. Then, we compare MOFES method with 22 state-of-the-art filter based and wrapper based
feature selection methods, and find that MOFES can effectively select fewer but closely related features
to construct high-quality models. Moreover, we also analyze the frequently selected features by MOFES,
and these findings can be used to provide guidelines on gathering high-quality SDP datasets. Finally, we

analyze the computational cost of MOFES and find that MOFES only needs 107 seconds on average.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Software defects are introduced during the coding process of
developers unconsciously. The reasons may come from misunder-
standing of the software requirements, unreasonable development
process, or the lack of development experience. Software with de-
fects will produce unexpected results or behaviors after the soft-
ware deployment, even will cause huge economic loss for enter-
prises in worst cases. Therefore, project managers want to use soft-
ware testing or code inspection to detect as many defects as possi-
ble. However, testing resources are overwhelmingly limited, project
managers hope that they can utilize effective methods to iden-
tify potential defective modules as early as possible and then allo-
cate enough testing resources on them. Software defect prediction
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(SDP) (Hall et al., 2012; Kamei and Shihab, 2016; Yang et al., 2015;
Yan et al., 2017) is one of such effective methods. It constructs SDP
models by mining software repositories (such as version control
systems, bug tracking systems, developer emails) and uses the con-
structed SDP models to predict potential defective modules.
During the process of gathering SDP datasets, researchers have
designed different software features' to measure extracted mod-
ules and these features often have strong correlation with software
defects. These software features are designed based on the anal-
ysis of code complexity or development process (Chidamber and
Kemerer, 1994; Nagappan and Ball, 2005; Moser et al., 2008; Has-
san, 2009; Radjenovic et al., 2013; Rahman and Devanbu, 2013).
However, not all the features are beneficial to the construction
of the SDP models. In particular, redundant features and irrele-
vant features will increase the model construction time, and even
sometimes decrease the performance of the constructed mod-
els (Ghotra et al., 2017; Xu et al., 2016a). This problem is called

! In the literatures of software defect prediction, software features are also called
software metrics.
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the curse of dimensionality. Designing novel and effective feature
selection methods is a potential way to solve this problem. More-
over, fewer features can be helpful for the interpretation of the
models and the visualization of the models. Previous studies have
shown the ubiquitous existence of irrelevant features and redun-
dant features in SDP datasets (Khoshgoftaar et al., 2012; Ghotra
et al., 2017). For example, Khoshgoftaar et al. (2012) showed that
the prediction performance of their proposed methods got worse
when the SDP datasets contained incomplete or irrelevant features.
Ghotra et al. (2017) conducted a dataset redundancy characteristic
analysis by using principal component analysis. They found that
to account for 95% of the data variance, the NASA datasets need
an average of 31% of the components while the PROMISE datasets
need an average of 59% of the components.

Nowadays, researchers have applied feature selection to soft-
ware defect prediction and made some progress (Menzies et al.,
2007; Gao et al, 2011; Wang et al., 2011; Song et al., 2011; Shivaji
et al.,, 2013; Liu et al., 2014b, 2015, 2016; Xu et al., 2016a, 2016b;
Ni et al., 2017a, 2017b). However, none of previous studies viewed
this issue as a multi-objective optimization problem. To the best
of our knowledge, we are the first to thoroughly evaluate multi-
objective feature selection for SDP. In particular, we mainly take
into account two optimization objectives. One optimization objec-
tive is to minimize the number of selected features, this objec-
tive is related to the cost analysis of this problem. Another ob-
jective is to maximize the performance of constructed SDP mod-
els, this objective is related to the benefit analysis of this prob-
lem. To address this problem, we propose MOFES method and
this method utilizes Pareto based multi-objective optimization al-
gorithms (PMAs) to solve this problem. To verify the effectiveness
of our proposed method, we design and conduct a series of em-
pirical studies. We choose RELINK and PROMISE datasets, which
are gathered from real open source projects, as our experimental
subjects. We use four different classifiers as the model construc-
tion methods. In particular, they are decision tree based classi-
fier (J48), lazy based classifier (K Nearest Neighbor, KNN), function
based classifier (logistic regression, LR), and probability based clas-
sifier (naive bayes, NB). We use AUC as the performance evaluation
measure.

The findings of our empirical studies can be summarized as fol-
lows. First, we analyze the influence of different PMAs on MOFES
and find NSGA-II (Deb et al., 2002) can achieve the best per-
formance in terms of hypervolume quality indicator. Then, we
compare MOFES method with 22 state-of-the-art filter based and
wrapper based feature selection methods, final results show that
MOFES can obtain better performance while choosing fewer fea-
tures. Later, we analyze the frequently selected features by MOFES
and find that features in different feature categories may ob-
tain different performances in the context of SDP. MOFES pro-
posed in this paper can make good use of the features from
different feature categories, which is help for constructing high-
quality SDP models. Finally, we analyze the computational cost of
our method and show that MOFES only needs 107 seconds on
average.

This paper extends our previous study (Chen et al., 2017) by
considering more datasets from real-world open source projects,
more Pareto based multi-object optimization algorithms as well
as by conducting more extensive empirical studies. In particular,
firstly, we further consider RELINK datasets to show the general-
ity of our previous empirical results. Secondly, MOFES considers
other 4 PMAs (i.e., MOCell, SPEA2, PAES and SMSEMOA). Thirdly,
we compare MOFES with 22 state-of-the-arts wrapper based or
filter based feature selection methods and most of these baseline
methods are not considered in our previous study. Then we ana-
lyze the features which are frequently chosen by MOFES to provide
guidelines for gathering high-quality SDP datasets in the future. Fi-

nally, we investigate the computational cost of MOFES and other
feature selection baseline methods.

The main contributions of this paper can be summarized as fol-
lows:

e To the best of our knowledge, we are the first to investigate
the performance of applying multi-objective feature selection to
software defect prediction. Though recently there are two large-
scale empirical studies (Ghotra et al., 2017; Xu et al., 2016a),
which analyze the impact of different feature selection meth-
ods on SDP, these empirical studies do not consider feature se-
lection methods using multi-objective optimization. Therefore,
our study is an important supplement to previous studies on
this issue.

» We consider a wide range of Pareto based multi-objective opti-
mization algorithms (i.e., NSGA-II, MOCell, SPEA2, PAES and SM-
SEMOA) for our method MOFES. We compare the performance
of these different PMAs in terms of hypervolume quality indi-
cator and find that NSGA-II can achieve the best performance.

o We compare MOFES based on NSGA-II with 22 state-of-the-art
wrapper based and filter based feature selection methods. Final
comparison results verify the effectiveness of MOFES.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of software defect prediction and previous
studies on applying feature selection to software defect predic-
tion. Section 3 describes our proposed method MOFES in detail.
Section 4 reports our empirical setup, including experimental sub-
jects, feature selection baseline methods, evaluation performance
measures and experimental design. Section 5 discusses the results
of our experiments and analyzes the potential threats to validity
for our empirical results. Section 6 concludes the paper with some
future work.

2. Background and related work
2.1. Background of software defect prediction

Software defect prediction (SDP) (Hall et al., 2012; Kamei and
Shihab, 2016; Tantithamthavorn et al.,, 2017; Lewis et al., 2013;
Chen et al., 2019) is an active research issue in software engineer-
ing data mining domain. It can be used to identify potential defec-
tive modules in advance, and then allocate more testing resources
on these modules. The process of SDP is shown in Fig. 1. This pro-
cess can be divided into two phases (i.e., SDP model construction
phase and SDP model application phase). In the model construc-
tion phase, it first mines software historical repositories (such as
version control systems, bug tracking systems, developer emails)
to extract and label program modules (here red blocks represent
defective modules and green blocks represent non-defective mod-
ules). The granularity of the modules can be set as component, file,
class or code change as needed (Menzies et al., 2007; Jureczko and
Madeyski, 2010; Kim et al., 2008; Kamei et al., 2013; Chen et al.,
2018). Then, it designs software features (Chidamber and Kemerer,
1994; Nagappan and Ball, 2005; Moser et al., 2008; Hassan, 2009;
Radjenovic et al., 2013; Rahman and Devanbu, 2013) to measure
extracted modules. These software features are mainly designed on
the analysis of code complexity or development process. Based on
the above steps, it can gather defect prediction datasets and use a
specific classifier (such as logistic regression, decision tree, support
vector machine) (Lessmann et al., 2008; Ghotra et al., 2015) to con-
struct defect prediction models. In the model application phase, it
can use the constructed models to predict new program modules
as defect-prone or non defect-prone.

Data preprocessing is an important step in the model construc-
tion phase and can help to improve the model performance. Com-
monly used data preprocessing methods include feature selection,
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Fig. 1. The Process of Software Defect Prediction.

class imbalanced learning (Tan et al., 2015; Jing et al., 2017; Mah-
mood et al., 2015; Rodriguez et al., 2014; Bennin et al., 2017; Oz-
turk, 2017; Wang and Yao, 2013; Tantithamthavorn et al., 2018;
Tantithamthavorn and Hassan, 2018), and noise identification and
removing (Kim et al., 2011; Wu et al., 2011; Nguyen et al., 2012;
Herzig et al., 2013; Tantithamthavorn et al., 2015). In this paper, we

mainly focus on feature selection for software defect prediction.

2.2. Applying feature selection to software defect prediction

If program modules are measured by using many software fea-
tures, the gathered datasets may have the problem of the curse of
dimensionality. Until now, there are many methods have been pro-
posed to solve the curse of dimensionality, which can be classified
into two categories: feature selection methods and feature reduc-
tion methods. In particular, feature selection methods reduce the
number of features by selecting a subset of the original features,
while feature reduction methods reduce the number of features by
combining original features into new features (Kondo et al., 2019).
In this paper, we mainly focus on feature selection for alleviating
curse of dimensionality, which aims to identify and remove irrele-
vant and redundant features as many as possible. In particular, an
irrelevant feature is a feature, which has little correlation with the
class. While a redundant feature is a feature, which contains in-
formation from one or more other features. Previous studies con-
firmed that the performance of SDP models may be hurt by irrele-
vant features or redundant features, since many classifiers are sen-
sitive to these kinds of features (Menzies et al., 2007; Lessmann
et al., 2008; Guo et al., 2004). Jiarpakdee et al. (2016) found that
10% ~ 67% of features in the 101 public SDP datasets are redundant.

However, feature selection is a challenge task if the search
space is large. If a dataset has n features, the number of possible
solutions is 2. Therefore, as the number of features n is increas-
ing, the task is becoming more challenging. Feature selection is a
challenge task also due to feature interaction problems. There are
2-way, 3-way or complex multi-way interactions among features. A
feature, which is weakly relevant to the class by itself, could signif-
icantly improve the model performance if it is used together with
some complementary features. While an individually relevant fea-
ture may become redundant when used together with other fea-
tures. Therefore, selecting or removing these features may miss the
optimal feature subsets.

Feature selection (Zhang et al., 2015; Nam et al., 2017; Hosseini
et al, 2017; He et al., 2015; Catal and Diri, 2009; Yu et al., 2017)

is an important data preprocessing step in SDP, which can reduce
the dimensionality of the datasets, speedup the learning process,
simplify the constructed models, and even increase the model per-
formance. Until now, many feature selection methods have been
proposed to solve this task. Existing feature selection methods can
be classified into two categories: filter based methods and wrapper
based methods. In particular, wrapper based methods evaluate the
goodness of feature subsets by using the performance of the con-
structed models. While the filter based methods use general char-
acteristics of datasets to evaluate the feature subsets. The compu-
tational cost of the latter methods is low, but the performance of
the constructed models can not be guaranteed.

Nowadays, researchers applied feature selection to improve
the performance of defect prediction models. Most of previous
studies used filter based methods. Menzies et al. (2007) con-
sidered information gain based feature selection methods, which
use forward selection strategy and exhaustive selection strat-
egy. Gao et al. (2011) considered feature selection on a large-
scale legacy software system in telecommunications. Their meth-
ods used different feature ranking and subset evaluation metrics.
Wang et al. (2011) applied ensemble learning to combine differ-
ent feature selection methods. Khoshgoftaar et al. (2012) exam-
ined 7 filter-based feature ranking methods for comparison based
on 16 SDP datasets. These features include chi-squared (CS), in-
formation gain (IG), gain ratio (GR), symmetrical uncertainty (SU)
and ReliefF with two variants (i.e.,, RF and RFW). We (Liu et al,,
2014b) proposed a feature selection framework FECAR by us-
ing feature clustering and feature ranking. Then, we (Liu et al.,
2016) further proposed a two-stage data preprocessing approach,
which incorporates feature selection and instance reduction. Re-
cently, we found that noises are inevitable when gathering SDP
datasets. Therefore, we (Liu et al., 2015) proposed a framework
FECS, which has a certain noise tolerance ability. Similar to FE-
CAR (Liu et al., 2014b; Xu et al., 2016b) also proposed a cluster
analysis based feature selection method MICHAC (i.e., maximal in-
formation coefficient with hierarchical agglomerative clustering), In
particular, they used maximal information coefficient to rank can-
didate features to remove irrelevant features. Then, they grouped
features by utilizing hierarchical agglomerative clustering and se-
lected one feature from each cluster to remove redundant features.
Shivaji et al. (2013) applied different feature selection methods to
code change based defect prediction proposed by Kim et al. (2008).
Wang et al. (2010) conducted a comprehensive empirical study
on examining 17 different ensembles of feature ranking meth-
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ods (i.e., rankers), which include 6 commonly-used feature ranking
methods, a signal-to-noise filter method, and 11 threshold-based
feature ranking methods. Experimental results indicated that en-
semble methods based on a few rankers are effective and some-
times even better than ensemble methods based on many or all
rankers. Muthukumaran et al. (2015) investigated 7 feature rank-
ing methods, 2 wrapper based methods and an embedded method
on the noisy NASA datasets and AEEEM datasets. They found
that there have no significant difference among these methods.
Liu et al. (2014a) proposed a new two-stage cost-sensitive learn-
ing method for SDP. This method utilized cost information not
only in the classification stage but also in the feature selection
stage. In particular, they developed 3 novel cost-sensitive feature
selection methods. These methods are CSVS (Cost-Sensitive Vari-
ance Score), CSLS (Cost-Sensitive Laplacian Score) and CSCS (Cost-
Sensitive Constraint Score). Experimental results demonstrated
that the proposed CSCS method outperforms single-stage cost-
sensitive learning methods, while the proposed cost-sensitive fea-
ture selection methods perform better than conventional cost-
blind feature selection methods. Khoshgoftaar et al. (2010) pro-
posed a method involving a feature selection method for se-
lecting the important features and an instance sampling method
for addressing class imbalanced problem. Empirical results sug-
gested that feature selection on sampled datasets performs sig-
nificantly better than feature selection based on the original
datasets.

There are a few studies on applying wrapper based methods to
SDP. Song et al. (2011) considered wrapper based feature selection
in their general defect prediction framework. Xu et al. (2016a) in-
vestigated 32 different feature selection methods. These methods
are divided into 5 families (i.e., filter based feature ranking meth-
ods, filter based subset selection methods, wrapper based subset
selection methods, clustering based methods and extraction based
methods). In their large-scale empirical studies, they found differ-
ent conclusions can be drawn based on different datasets. Later,
Ghotra et al. (2017) considered 30 feature selection methods and
21 classifiers. They found that the correlation-based filter-subset
feature selection method with the BestFirst search strategy outper-
forms other feature selection methods. Laradji et al. (2015) firstly
investigated 3 feature selection methods for software defect pre-
diction and observed that selecting a few high-quality features can
achieve much higher performance than others in terms of AUC. Be-
sides, there also exist a few studies investigating the impacts of
software features on the interpretation of defect prediction mod-
els (Jiarpakdee et al., 2018, 2019). The interpretation of such mod-
els is used to build empirical theories that are related to soft-
ware quality (i.e., defect-prone or non defect-prone). That is, what
software features share the strongest association with software
quality.

Based on the above analysis, we can find that researchers
have applied feature selection to software defect prediction and
obtained some achievements. However, none of previous stud-
ies viewed this issue as a multi-objective optimization problem
(i.e., this problem is only treated as a single objective optimiza-
tion problem). Therefore, in this paper we want to apply wrap-
per based feature selection, which uses multi-objective optimiza-
tion, to this problem. We notice that Canfora et al. (2015) ap-
plied multi-objective optimization to software defect prediction.
But they mainly focused on the issue of cross-project defect pre-
diction and wanted to achieve specific compromise between the
number of likely defect-prone modules that the developers would
likely discover, and lines of code to be analyzed/tested. Different
from their study, we formalize a different problem (i.e., feature
selection for software defect prediction) as a multi-objective op-
timization problem and this problem certainly has different opti-
mization objectives.

3. Our proposed method MOFES

Our study can be put into the domain of search based software
engineering (SBSE). SBSE concept was first proposed by Harman
(Harman et al.,, 2012). It has become a hot research topic in re-
cent software engineering research. SBSE has been applied to many
problems throughout the software life cycle, from requirement
analysis, software design, to software maintenance. SBSE is promis-
ing because it can provide automated or semi-automated solutions
for software engineering problems with large-scale complex prob-
lem spaces, which have multiple competing or even conflicting ob-
jectives. For software defect prediction, Mark (Harman, 2010) also
firstly suggested that SBSE (in particular multi-objective optimiza-
tion) can be potentially used to construct defect prediction models.

If we formalize feature selection for software defect prediction
as a multi-objective optimization problem, we can use state-of-
the-art Pareto based Multi-Objective Algorithms (PMAs) to solve
this problem. In particular, in this problem, we mainly consider
two objectives. One objective is to choose features as fewer as
possible, this is from the cost point of view to analyze this prob-
lem. Another objective is to improve the performance of the con-
structed defect prediction models as much as possible, this is from
the benefit point of view to analyze this problem. There is an ob-
vious conflict between these two objectives in most cases. In par-
ticular, selecting less features maybe decrease the model perfor-
mance. On the contrary, improving the model performance maybe
need to select more features. Therefore, we should make a com-
promise between these two conflict objectives. In this paper, we
take PMAs into consideration and propose method MOFES (Multi-
Objective FEature Selection). By using this method, we can obtain
a series of non-dominated feature subsets and choose appropriate
feature subsets according to actual requirements (i.e., preferring to
choose less features or preferring to construct models with higher
performance).

In this section, we first give some definitions for multi-objective
optimization. Then, we introduce our framework by utilizing a spe-
cific PMA (i.e., NSGA-II proposed by Deb et al., 2002). Finally, we
introduce other PMAs, which can also be utilized by our frame-
work.

3.1. Preliminaries

For the convenience of the subsequent description, we first give

some definitions for multi-objective optimization in the context of
feature selection for software defect prediction.
Definition 1 (Pareto Dominance). Supposing w; and w; are
two feasible solutions for this problem, we call w; is Pareto
dominance on w; (ie, w;>w;), if and only if: benefit(w;) >
benefit(w;) and cost(w;) < cost(w;) or benefit(w;) > benefit(w;) and
cost(w;) < cost(w;)

In this problem, a feasible solution denotes the selected feature
subset. Function benefit() returns the prediction performance when
using this feature subset to preprocess the dataset and then build
the model. Function cost() returns the number of selected features.

Definition 2 (Pareto Optimal Solution). A feasible solution w is a
Pareto optimal solution, if and only if there is no other feasible
solution w*, which is Pareto dominance on w.

Definition 3 (Pareto Optimal Set). This set is composed by all the
Pareto optimal solutions.

Definition 4 (Pareto Front). The surface composed by the vectors
corresponding to all the Pareto optimal solutions is called Pareto
front.
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Fig. 2. Interpretation for Definitions in Multi-Objective Optimization.

We use a simple example to interpret these definitions. Suppos-
ing there are 7 candidate solutions for MOFES on a training set and
these solutions are shown in Fig. 2. In this figure, x-axis denotes
the cost value of the solution and y-axis denotes the benefit value
of the solution. Based on Definition 1, we can find that solution C
is Pareto dominance on solution E, since benefit(C) > benefit(E) and
cost(C) < cost(E). Solutions A, B, C and D are pareto optimal solu-
tions based on Definition 2, since there is no other solutions which
are Pareto dominance on them. Therefore, the surface A-B-C-D con-
stitutes Pareto front in these solutions.

3.2. MOFES by utilizing NSGA-II

Before utilizing MOAs, we first illustrate the encoding schema
and the fitness value of the chromosome. For the chromosome en-
coding schema, we encode a feasible solution into n bit string if
a dataset has n features. If the value of the i-th bit is set as 1, it
means the i-th feature is selected. Otherwise if the value is set as
0, it means the i-th feature is not selected. Supposing there are 5
features {f1, f>, f3, fa, f5} and a initial population is {10010, 00100,
10110}. This means that the initial population include 3 chromo-
somes and these chromosomes correspond to these feature subsets
(i.e., {f1, fa}, {f3} and {f1, f3, f4}). There are two fitness values for
each chromosome. From the benefit perspective, the fitness value
of the chromosome returns the model performance on the train-
ing set by using the corresponding feature subset. More details on
how to compute the fitness value can be found in the experimental
design (in Section 4). From the cost perspective, the fitness value
of the chromosome returns the size of the selected feature subset.
If the selected feature subset is {f, f4}, the corresponding fitness
value is 2.

The algorithm of MOFES by utilizing NSGA-II can be found in
Algorithm 1. In Algorithm 1, we first use initPop() function in Step
2 to initialize a population. The population has N chromosomes
and each chromosome is randomly generated. For feature selec-
tion in SDP, there are three different heuristic initialize strate-
gies (i.e., small initial strategy, large initial strategy and hybrid ini-
tial strategy). For the small initial strategy, chromosomes are ran-
domly generated with fewer features (i.e., less than half of fea-
tures). For the large initial strategy, chromosomes are randomly
generated with more features (i.e., larger than half of features).
For the hybrid initial strategy, chromosome are randomly gener-
ated. Half have fewer features and other half have more features.
For MOFES, we use the small initial strategy to improve the perfor-
mance of our method. More specifically, in our method each chro-
mosome is generated by just randomly selecting only one feature.

Then, we use makeNewPop() function in Step 4 to generate new
chromosomes by using classical evolutionary operators (such as

Algorithm 1 MOFES by Utilizing NSGA-IIL
Input:
Population Size: N
Maximum Iteration Number: T
Output:
Pareto Optimal Set
1: 1«0
2: P, < initPop(N)
3: while i <T do
4 C; < makeNewPop(P;)
5: B,‘ <~ Pz U C,‘
6: F <« fastNondominatedSort (B;)
7.
8
9

P <9,
j<1
: while |P 4|+ |F;| <N do
10: crowingDistanceAssign (F;)
1: Piyq < By UF
12: j<—j+1
13:  end while
14:  sort(F;) [/according to crowding distance
150 Pyg < Py UF[T: (N= [P D]
16: i<i+1
17: end while
18: return Pareto optimal solutions in P

crossover operator, mutation operator) in genetic algorithm. For ex-
ample, the crossover operator will randomly choose two chromo-
somes according to crossover probability, perform crossover oper-
ation, and generate two new chromosomes. The mutation operator
will randomly choose a chromosome according to mutation prob-
ability, perform mutation operation, and generate a new chromo-
some.

Later, we perform selection operation from Step 5 to Step 16 to
select high-quality chromosomes into the new population. In par-
ticular, we first combine chromosomes in the previous population
and new chromosomes generated by the mutation and crossover
operations into B;. Then, we use fastNondominatedSort() function to
compute non-dominated ranks (NDR) for each candidate chromo-
some. First this function identifies all the non-dominated chromo-
somes in B;, sets their NDR value as 1, puts these chromosomes
into F;, and removes these chromosomes from B;. Then it contin-
ues to identify all the non-dominated chromosomes in B;, sets their
NDR value as 2, puts these chromosomes into F,, and removes
these chromosomes from B;. When all the chromosomes have their
NDR value, this process is terminated. Based on NDR value, we will
select chromosomes with smaller NDR value as many as possible
from Step 7 to Step 15. In Step 14, we use the concept of crowding
distance. The crowding distance is the sum of the distance with
other chromosomes, which have the same NDR value. Therefore,
a chromosome with higher crowding distance will be in the low
density regions of the search space. By considering crowding dis-
tance, we can avoid selecting chromosomes with high similarity. In
the implementation of MOFES, we store the fitness value of each
chromosome in the previous population to avoid repeated compu-
tation.

After sufficient population evolution, MOFES will satisfy the ter-
mination criterion and converge to stable solutions. Finally, MOFES
returns all the Pareto optimal solutions in the current population.

3.3. Other PMAs

In addition to NSGA-II, we can also utilize other classical
PMAs (Wang et al., 2016a). We consider the following PMAs: MO-
Cell, SPEA2, PAES and SMSEMOA.
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MOCell (Multi-objective cellular) (Nebro et al., 2007) is de-
signed based on the cellular model of genetic algorithms. This PMA
assumes that a chromosome only communicates with its neighbors
during the evolutionary process. In addition, it uses an external
archive to store a set of obtained non-dominated solutions.

SPEA2 (Improved strength Pareto evolutionary algo-
rithm) (Zitzler and Thiele, 1999) computes the fitness value
for each chromosome based on the objective function and the
density estimation. This PMA uses the density estimation to maxi-
mize the population diversity by computing the distance between
a solution and its nearest neighbors. SPEA also uses an archive to
store a fixed number of best solutions.

Similar to MOCell and SPEA2, PAES (Pareto archived evolution
strategy) (Knowles and Corne, 2000) uses an archive to store all
the non-dominated solutions. The characteristic of PAES is that it
uses a dynamic mutation operator for exploring the search space
and aims to find optimal solutions.

SMSEMOA (Beume et al, 2007) combines ideas from other
PMAs. It uses non-dominated sorting as a ranking criterion and
applies hypervolume as the selection criterion to discard the chro-
mosomes, which contribute the least hypervolume to the worst-
ranked Pareto front.

Different from previous PMAs, we also consider RandomSearch.
RandomSearch is used to represent the random search strategy.
Both the evaluation and the selection functions are designed in a
random way. This strategy is often chosen as the baseline method
for other complex PMAs.

4. Experimental setup

To verify the effectiveness of our proposed MOFES, we design
the following research questions.

RQ1: Among the Pareto-based multi-objective optimization al-
gorithms, which one can achieve best performance for MOFES?

RQ2: Compared with state-of-the-art wrapper-based or filter-
based feature selection methods, does MOFES have advantage in
selecting fewer features while achieving better performance?

RQ3: Which software features are frequently chosen by MOFES?

RQ4: Does the computational cost of MOFES lower than that of
commonly-used feature selection methods?

In this paper, we first investigate 6 classical PMAs and compare
the performance of these PMAs in terms of hypervolume quality
indicator. After finding the PMA, which can achieve the best per-
formance, we then want to answer the following three RQs. In
these RQs, we will compare MOFES method with 22 state-of-the-
art feature selection methods. Then, we want to analyze the fre-
quently selected features by MOFES method and these findings can
be used to provide guidelines for the collection of SDP datasets
with higher quality. Finally, we want to analyze the computational
cost of MOFES method.

Before answering these RQs, we first introduce the experiment
setup, including experimental subjects, feature categories, baseline
feature selection methods, performance measures and experimen-
tal design.

4.1. Experimental subjects

To verify the effectiveness of our proposed method, we choose
experimental subjects from real open source projects (i.e., RELINK
and PROMISE datasets). These two datasets have been widely used
in previous studies (Menzies et al., 2007; Tantithamthavorn et al.,
2017; Lessmann et al., 2008; Ghotra et al., 2015; Wang et al.,,
2016b; Li et al., 2017; Nam and Kim, 2015; Liu et al., 2016; Xu et al.,

Table 1
Characteristics of PROMISE Datasets.

Name Granularity ~ # Modules  # Defective Modules
Ant-1.7 Class 745 166
Camel-1.6 Class 965 188
Ivy-2.0 Class 352 40
Jedit-4.0 Class 306 75
Lucene-2.4 Class 340 203
Poi-3.0 Class 442 281
Synapse-12  Class 256 86
Velocity-1.6 Class 229 78
Xalan-2.6 Class 885 411
Xerces-1.4 Class 588 437
Table 2

Characteristics of RELINK Datasets.

Name Granularity ~ # Modules  # Defective Modules
Apache  File 194 98
Safe File 56 22
ZXing File 399 118

2016a, 2016b; Liu et al., 2014b, 2015; Song et al., 2011) and can be
downloaded from PROMISE repository?.

PROMISE datasets are provided by Jureczko and
Madeyski (2010). These datasets were gathered from 10 different
open source projects (such as ant, lucene, poi). The granularity
of the program modules is set as class and they considered 20
metrics, such as CK metrics proposed by Chidamber and Ke-
merer (1994). These metrics take into account the encapsulation,
inheritance and polymorphism of object-oriented programs. The
characteristics of PROMISE datasets (such as project name, granu-
larity, number of modules, and number of defective modules) are
shown in Table 1.

RELINK datasets are gathered by Wu et al. (2011). They analyzed
3 open source projects (i.e., Apache HTTP Server, Safe and ZXing).
These datasets considered 26 metrics, which are based on code
complexity and can be measured by Understand tool. The charac-
teristics of RELINK (such as project name, granularity, number of
modules, and number of defective modules) are shown in Table 2.

4.2. Feature categories

The features (i.e., metrics) used by RELINK and PROMISE can
be grouped into different categories. Table 3 shows the details of
these feature categories. In RELINK (Wu et al., 2011), the consid-
ered features are grouped into two categories according to the def-
initions by Understand>. There are 12 complexity metrics (CPM)
and 15 count metrics (CTM). The category to which the metric be-
longs is shown in the fourth column. Notice that the sum (=27) of
the number of complexity metrics (=12) and the number of count
metrics (=15) is greater than the total number of features (=26).
The reason is that the feature RatioCommentToCode in ReLink be-
longs to two categories simultaneously. In PROMISE (Jureczko and
Madeyski, 2010), the considered 20 features are also grouped into
two categories: object-oriented metric (OOM) and complexity met-
ric (CPM). In particular, OOM category can be further divided
into 5 metric suites: 7 metrics suggested by Chidamber and Ke-
merer (1994), 2 metrics suggested by Henderson-Sellers (1995), 6
metrics suggested by Bansiya and Davis (2002), 4 metrics which
are the quality oriented extension to Chidamber & Kemerer metric
suite and 3 metrics suggested by Martin (1994). For CPM category,
it only has McCabe‘s metric suite, which contains 3 metrics. Notice

2 http://openscience.us/repo.
3 https://scitools.com/support/metrics_list.
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Table 3
Feature Categories for RELINK and PROMISE.
Dataset Category Description Feature Name # Feature
RELINK Complexity Metric (CPM) Complexity measures of the AvgCyclomatic, 12
source code, e.g., McCabe AvgCyclomaticModified,
Cyclomatic measure AvgCyclomaticStrict,
AvgEssential, MaxCyclomatic,
MaxCyclomaticModified,
MaxCyclomaticStrict,
RatioCommentToCode,
SumCyclomatic,
SumCyclomaticModified,
SumCyclomaticStrict,
SumEssential
Count Metric (CTM) Quantitative counting of the Avgline, AvgLineBlank, 15
source code,e.g., the number AvglLineCode,
of all lines AvgLineComment, CountLine,
CountLineBlank,
CountLineCode,
CountLineCodeDecl,
CountLineCodeExe,
CountLineComment,
CountSemicolon, CountStmt,
CountStmtDecl,
CountStmtExe,
RatioCommentToCode
PROMISE  Object Oriented Metric (OOM)  Chidamber and Kemerer (CK) WMC, DIT, NOC, CBO, RFC, 7
LCOM, LOC
Henderson-Sellers (HS) LCOM3, LOC 2
Bansiy and Davis (HD) NPM, DAM, MOA, MFA, CAM, 6
LOC
An extension to Chidamber IC, CBM, AMC, LOC 4
and Kemerer metrics (ECK)
Martin (Martin) CA, CE, LOC 3
Complexity Metric (CPM) Complexity measures of the MAX(CC), Avg(CC), LOC 3

source code, e.g., McCabe

Cyclomatic measure

that the feature LOC in PROMISE belongs to all these metric suites
simultaneously.

4.3. Baseline feature selection methods

In this paper, we consider 22 state-of-the-art feature selection
methods (Ghotra et al., 2017; Xu et al., 2016a; Liu et al., 2014b)
as baselines. These methods can be classified into four categories:
filter based ranking methods, filter based subset methods, wrapper
based subset selection methods and no feature selection method.

4.3.1. Filter based ranking methods

Filter based ranking methods, which use some measures to as-
sign a score to each feature and present the users with a ranked
list of features. This kind of methods can be further classified into
5 subcategories: statistic based methods, probability based meth-
ods, instance based methods, classifier based methods and cluster-
ing based methods.

For statistic based methods, we consider ChiSquared statis-
tic (Liu and Setiono, 2012) to evaluate the importance of the fea-
ture.

For probability based methods, gain ratio (Quinlan, 1993) can
mitigate the bias of information gain by penalizing the features
with more values. Information gain (Cover and Thomas, 2012) is an
entropy-based method. It measures the reduction in uncertainty of
a class label after observing a feature. However, information gain
is biased toward features with more values. Symmetrical uncer-
tainty (Kannan and Ramaraj, 2010) evaluates the value of a set of
features by measuring their symmetrical uncertainty with respect
to another set of features.

For instance based methods, ReliefF (Kononenko, 1994) is an in-
stance based ranking method. An instance from the dataset is ran-
domly sampled and its nearest neighbour is located from the same

or the opposite class. The relevance score of each feature is up-
dated by comparing the values of the nearest neighbor features to
the sampled instance.

For classifier based methods, one rule (Holte, 1993) generates a
one-level decision rule for each individual feature and features are
ranked according to their classification error rate. Support vector
machine assigns a weight to each feature and uses the square of
the assigned weight to rank the features.

For clustering based methods, FECAR is a representative
method. FECAR (Liu et al., 2014b) firstly partitions original features
into k clusters based on FF-Correlation measure (i.e., the correla-
tion between any pair of features), then it selects relevant features
from each cluster based on FC-Relevance measure (i.e., the rele-
vance between a feature and the target class). In this paper, we
only choose Symmetric Uncertainty as the FF-Correlation measure,
and choose Information Gain, ChiSquare, ReliefF, Symmetric Uncer-
tainty as the FC-Relevance measure respectively.

For these methods, the subset of features from the top-k of
the ranking list is selected. Here, k is set to select [log,m] fea-
tures from the original feature set, which is recommended by
Gao et al. (2011). Here m is the number of original features.

4.3.2. Filter based subset methods

Filter based subset selection methods use statistical measures
on feature subsets to find the best one. A correlation-based feature
subset method and a consistency-based feature subset method are
considered in this paper.

Correlation-based  feature  subset  selection  (CfsSub-
set) (Hall, 2000) aims to identify a feature subset, in which
these features have a high correlation with respect to the class
label while having a low correlation within each other.

Consistency-based feature subset selection (ConsistencySub-
set) (Dash et al., 2000) uses an indicator (i.e., consistency) to mea-
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sure the metric of a feature subset. This method aims to search for
the minimal subset, whose consistency is equal to that of all the
features.

4.3.3. Wrapper based methods

Wrapper based subset selection methods construct classifica-
tion models using different subsets to find the ones which can
achieve the best performance.

In this category, four classical classifiers (e.g., J48, KNN, LR and
NB) are considered to validate the influence of different classi-
fier on wrapper based methods. We also consider two types of
search strategies in these methods: GFS (Greedy Forward Selec-
tion) and GBS (Greedy Backward Selection). In particular, GFS starts
from an empty set (i.e., no features), then iteratively adds an op-
timal feature by using hill climbing until the performance of the
model can not be further improved. On the contrary, GBS starts
from all the features, then it iteratively removes a feature by us-
ing hill climbing until the performance of the model can not be
further improved. Both GFS and GBS use greedy search strategies.
Song et al. (2011) considered these two strategies in their proposed
general defect prediction framework. However, these two search
strategies exist nesting effect.

4.3.4. No feature selection method

This method does not consider feature selection. It means that
we use all of original features to construct models and then evalu-
ate the performance. We use FULL to denote this method.

To facilitate subsequent description for these baseline meth-
ods, we give abbreviation for each method. Table 4 provides an
overview of all these baseline methods.

4.4. Performance evaluation measures

Previous studies argued that threshold-dependent performance
measures (such as precision, recall, and F1) are problematic be-
cause they: (1) depend on an arbitrarily-selected threshold and (2)
are sensitive to class imbalanced datasets. Instead, we use a more
reasonable measure AUC (Area Under the receiver operator charac-
teristic Curve) to measure the prediction performance of SDP mod-
els suggested by a recent study (Tantithamthavorn et al., 2016). Us-
ing ROC curve can consider different thresholds. In particular, hor-
izontal axis represents the value of TPR (true positive rate), while
vertical axis represents the value of FPR (false positive rate). Ac-
cording to different thresholds, the model has corresponding TPR
value and FPR value and these two values can correspond to a
point. All these points are then connected as a ROC curve. The
value of AUC is the area under the ROC curve. The value of AUC
is more close to 1, the better the performance of the constructed
model. AUC performance measure is widely used in previous SDP
studies (Xu et al., 2016a, 2016b; Liu et al., 2016, 2015, 2014b).

Instead of AUC performance measure, we also use quality in-
dicators to evaluate the quality of Pareto fronts generated by dif-
ferent PMAs. These quality indicators can be classified into 4 cate-
gories: convergence, diversity, combination of convergence and di-
versity, and coverage (Wang et al., 2016a). In this paper, we select
hypervolume (HV) (Zitzler and Thiele, 1999) because of its popu-
larity in evaluation PMAs. HV can measure the volume in the ob-
jective space that is covered by a Pareto front. Therefore, it can
measure both the convergence and the diversity of a Pareto front.
A higher value of HV means a better quality of the Pareto front.
More details of HV quality indicator can be found in Zitzler and
Thiele (1999) and we use the implementation of HV quality indi-
cator provided by JMetal packages (Durillo and Nebro, 2011a) to
avoid the threats to internal validity.

4.5. Experimental design

We use 4 classical classifiers (i.e., J48, KNN, LR and
NB) (Radjenovic et al., 2013; Kamei and Shihab, 2016; Hall et al.,
2012; Ghotra et al., 2017; Khoshgoftaar et al., 2012; Rahman and
Devanbu, 2013) to construct the defect prediction models after pre-
processing the training set by using the selected features.

J48 is a decision tree based classifier. Decision trees use fea-
ture values for the classification of instances. A feature in an in-
stance that has to be classified is represented by each node of the
decision tree, while the assumption values taken by each node is
represented by each branch. The classification of instances is per-
formed by following a path through the tree from root node to leaf
nodes by checking feature values against rules at each node. The
root node is the node, which can best divide the whole training
data.

KNN is a nearest neighbor technique. Nearest neighbour tech-
niques are another category of statistical techniques. Nearest
neighbour techniques take more time in the testing phase, while
taking less time than techniques (such as decision trees, neural
networks and Bayesian networks) in the training phase.

LR is a function based classifier and is short for Logistic Regres-
sion. LR is a linear regression after the normalization of the logistic
function. It studies the fitting parameters from the training set, fits
the target values into the range of [0,1], and then discretizes the
target values for classification. The binary logistic model is often
used in the context of SDP, which estimates the probability of a
binary response based on one or more features.

NB is a simple probabilistic classifier, which assumes the fea-
tures are statistically independent of each other. It can provide
good enough classification results, even though some of the fea-
tures are inter-related.

In our experiments, we use the implementation of these clas-
sifiers provided by Weka packages to avoid the internal threats to
validity and use default value for hyperparameters of these classi-
fiers.

To evaluate the model performance of different feature selec-
tion methods (Tantithamthavorn et al., 2017), we first use strati-
fied sampling to generate training set trainset and testing set test-
set respectively. In particular, we randomly select 70% instances as
the training set and the remaining 30% instances as the testing set.
Then we use a specific feature selection method fsm on the trainset
and fsm returns a selected feature subset f;,;.; Latter, we use the
chosen fgps¢ to preprocess trainset and testset simultaneously and
then generate new training set trainset’ and new testing set testset’.
Finally, we use a specific classifier to construct a SDP model
on trainset’ and use testset’ to evaluate the performance of the
constructed model. The model performance evaluation process is
shown in Fig. 3. To reduce the randomness in splitting the dataset
into the training set and the testing set, we perform this split pro-
cess 10 times independently. Notice that all the features selection
methods are only applied to trainset, since the label of each mod-
ule in testset would not be available (Song et al., 2011). Some pre-
vious studies mistakenly applied feature selection methods to the
whole data set and Menzies et al. thought this is one of the rea-
sons for modeling violation issue (Menzies et al., 2007). Moreover,
Jiarpakdee et al. (2018) and Tantithamthavorn et al. (2018) advo-
cated that feature selection methods should be applied only on the
training set to avoid producing optimistically biased performance
estimation and interpretation.

Baseline feature selection methods only return a feature subset
based on trainset, while our proposed method MOFES will return
a Pareto optimal solution based on trainset. To generate the Pareto
optimal solution, each chromosome in the population represents a
chosen feature subset, its fitness value is computed based on train-
set using 3-fold cross validation. In particular, for 3-fold cross val-
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Table 4

Overview of State-of-the-art Feature Selection Baseline Methods.

223

Category Subcategory

Method Name

Method Description

Abbreviation

Filter based
Ranking Methods

Statistics based method

Probability based methods

Instance based method

Classifier based methods

Clustering based methods

(FECAR)

Filter based Subset
Methods

Correlation based feature
subset selection

Consistency based feature
subset selection

Wrapper based 148
Subset Selection
Methods

KNN

LR

NB

No Feature None

Selection Method

ChiSquared_Ranker

GainRatio_Ranker

InfoGain_Ranker

SymmetricalUncert_Ranker

ReliefF_Ranker

OneR_Ranker

SVM_Ranker
Cluster_ChiSquare_FeatureSelection
Cluster_IG_FeatureSelection
Cluster_ReliefF_FeatureSelection
Cluster_SU_FeatureSelection

CfsSubset_GreegyStepwise

ConsistencySubset_GreegyStepwise

WrapperSubset_GreegyStepwise]48

WrapperSubset_GreegyStepwise]48_Back

WrapperSubset_GreegyStepwiseKNN

WrapperSubset_GreegyStepwiseKNN_Back

WrapperSubset_GreegyStepwiseLR

WrapperSubset_GreegyStepwiseLR_Back

WrapperSubset_GreegyStepwiseNB

WrapperSubset_GreegyStepwiseNB_Back

Full

Evaluate the worth of a feature by
computing the value of the chi-squared
statistic with respect to the class

Evaluate the worth of a feature by
measuring the gain ratio with respect to
the class

Evaluate the worth of a feature by
measuring the information gain with
respect to the class

Evaluate the worth of a feature by
measuring the symmetrical uncertainty
with respect to the class

Evaluate the worth of a feature by
repeatedly sampling an instance and
considering the value of the given feature
for the nearest instance of the same and
different class

Evaluate the worth of a feature by using
the OneR classifier

Evaluate the worth of a feature by using
an SVM classifier

Use SU as FF-Correlation and ChiSquare as
FC-Correlation in FECAR

Use SU as FF-Correlation and Information
Gain as FC-Correlation in FECAR

Use SU as FF-Correlation and ReliefF as
FC-Correlation in FECAR

Use SU as FF-Correlation and
FC-Correlationin FECAR

Evaluate the worth of a subset of features
by considering the individual predictive
ability of each feature along with the
degree of redundancy between them
Evaluate the worth of a subset of features
by the level of consistency in the class
values when the training instances are
projected onto the subset of features
Evaluate feature subset by using J48 as the
classifier and using the search forward
strategy

Evaluate feature subset by using J48 as the
classifier and using the search backward
strategy

Evaluate feature subset by using KNN as
the classifier and using the search forward
strategy

Evaluate feature subset by using KNN as
the classifier and using the search
backward strategy

Evaluate feature subset by using LR as the
classifier and using the search forward
strategy

Evaluate feature subset by using LR as the
classifier and using the search backward
strategy

Evaluate feature subset by using NB as the
classifier and using the search forward
strategy

Evaluate feature subset by using NB as the
classifier and using the search backward
strategy

Use all the original features to construct
models

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FS1

FS2

WS1

WS2

WS3

WS4

WS5

WS6

WS7

WS8

FULL

idation, we randomly split trainset into 3 folds by using stratified
sampling. We use the 2/3 instances to build the model by a spe-

cific classifier, and then use the remaining 1/3 instances to evalu-

ate the goodness of the selected feature subset. This process is re-

peated 3 times (i.e., each instance in trainset has been used to pre-

dict merely once). Finally, we use the average AUC value of these

3 runs as its fitness value. The main process is shown in Fig. 4.

Based on suggestions by previous studies on applying PMAs for
numerical problem (Coello et al., 2007), parameter name and their

5. Result analysis

5.1. Result analysis for RQ1

value of PMAs used by MOFES are shown in Table 5. In this table,
n represents the number of features.

To investigate the influence of different PMAs on MOFES
method, we take 6 state-of-the-art PMAs (i.e., NSGA-II, MOCell,
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Feature
Selection
Method

Classifier

Training
Set

Dataset

Testing
Set

Select
Features

Training
Set’

Testing
Set’

Fig. 3. The Process of Model Performance Evaluation.

Table 6
Average Rank for Different PMAs on RELINK and PROMISE.

PMA Rank on RELINK  Rank on PROMISE
NSGA-II 5167 5.063

- MOCell 4917 4313

1 SPEA2 3.958 4325
SMSEMOA 3.292 2425
PAES 2.458 3.875
RandomSearch 1.208 1.000

Training Set Using selected feature Testing set
subset and classifier to
construct the model

Return the average
value of AUC

Fig. 4. The Fitness Value Computing Process for Each Chromosome.

Table 5
Parameter Setting of PMAs used by MOFES.

Parameter Value

Population Size 100

Maximum Evaluation Number 3000

Selection Operator Binary Tournament
Crossover Operation Simulated Binary

Searc have almost the same and relative good performance on RE-
LINK in terms of HV. The similar conclusions can also be drawn on
PROMISE.

To further compare the performances of different PMAs, we
firstly compare these PMAs based on the mean and standard de-
viation. Based on results on RELINK and PROMISE, we find that
NSGA-II can achieve the best performance in most cases followed
by MOCell. Then we compare these PMAs based on the median and
IQR (interquartile range). Based on results on RELINK and PROMISE,
we can find the same conclusions. Due to the length limitation
of this paper, the detailed comparison results can be found in
Appendix A and Appendix B.

Finally, we use Friedman test to analyze the ranks for different

CMrossqver Rate 09 PMAs. The Friedman test assumes that the higher the rank, the
utation Operator Polynomial " R

Mutation Rate 1n better the performance in terms of the HV indicator. The results
Archive Size 100 on RELINK and PROMISE datasets are shown in Table 6. In this

SPEA2, PAES, SMSEMOA and RandomSearch) into consideration and
want to find which one can achieve best performance for MOFES.
To reduce the randomness in splitting the dataset into the
training set and the testing set, we perform this split process 10
times independently. The distribution of performance in terms of
HV on RELINK by using different classifiers can be found in Figs. 5—
8 respectively. The subfigures in each figure represent the results
on different projects of RELINK and use boxplot to show the per-
formance distribution. For each subfigure, x-axis represents differ-
ent PMAs and y-axis represents the performance in terms of HV
quality indicator. From Fig. 5, when using J48 as the classifier,
NSGA-II is better than other PMAs based on median value. More-
over, NSGA-II can also achieve a stable performance on different
projects. From Fig. 6, when using KNN as the classifier, NSGA-II is
better than other PMAs based on median value in ZXing. While
all PMAs except for RandomSearch have similar results in Apache
and Safe. From Fig. 7, when using LR as the classifier, all PMAs ex-
cept for RandomSearch have similar results in all projects. From
Fig. 8, when using NB as the classifier, NSGA-II is better than other
PMAs based on median value in Apache and Safe. However, all
PMAs have poor performance in ZXing. In summary, we can find
that when using different classifiers, all PMAs except for Random-

table, the Friedman test considers reduction performance, which
is distributed according to chi-square with 5 degrees of freedom.
According to the results of Friedman test on two datasets, NSGA-
Il is the best since it has the highest rank score, while Random-
Search is the worst. Meanwhile, the top-3 PMAs on two datasets
have the same ranking order, which indicates the stability of these
three PMAs.

Summary for RQ1: In most cases, there is not much differ-
ence among NSGA-II, MOCell, SPEA2, PAES and SMSEMOA.
However, RandomSearch always performs the worst on all
datasets. Meanwhile, NSGA-II has an advantage over other
PMAs when analyzing the mean value and median value
in terms of HV indicator. It also has a highest rank score
according to the results of the Friedman test. Therefore,
we choose NSGA-II as the best PMA for implementing our
method MOFES.

5.2. Result analysis for RQ2

In this RQ, we want to compared MOFES with 22 state-of-
the-art wrapper-based and filter-based feature selection meth-
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Fig. 5. The Distribution of Performance in terms of HV for Different PMAs on Relink by using J48 as the Classifier.
HV:Apache.KNN HV:Safe.KNN HV:ZXing.KNN
0.8 | 0.7 — Y o
E ] — ] F 1 0.8 -
— " I I s— /] — — BE—J 5
0.7 0.6 | - ' T _ — ‘
0.6 | 0.5 07 4 ' -
0.5 0.4 3
0.6 - —
0.4 - 0.3 -
0.3 - 0.2 -
e 0.5 -
0.2 - E 0.1 E 1
0.1 o ° 0 - — 0.4 - @
T T T T T T T T T T T T T T T T T
s, o, S, 2, S, Ron, s, Y, So, %, Sty R s, 5, Sp, 2 St Ron
Sy, Gy % % S, O S, G4 A S Mo, g S, G % S N, O,
< o, “ s, < o,
(% () %
Fig. 6. The Distribution of Performance in terms of HV for Different PMAs on Relink by using KNN as the Classifier.
HV:Apache.LR HV:Safe.LR HV:ZXing.LR
0.8 - 0.7
—— 5 —_— e == s ° -
0.7 4 - — = 0.6 o
0.6 4 07 4 05 4
0.5 - 0.4 +
0.6 -
0.4 - e 03 —_
' 0.5 | '
0.3 . 0.2 ‘
0.4 - . .
0.2 ‘E 0.1
0.1 - - 0.3 - —_ [
T T T T T T T T T T T T T T T T T
S Y 8o, o, Sy, o, s, Y, S, 2 Sy, Ron, s, Y, 8p, % Sy, R,
S, Coy s ) S e, %y, Gy R 8 %"o o, S, Gy %, s %4,0 g,
o, €3, 4 oy,
(s (‘6 06
Fig. 7. The Distribution of Performance in terms of HV for Different PMAs on Relink by using LR as the Classifier.

ods (Ghotra et al., 2017; Xu et al., 2016a). Based on the result anal-
ysis for RQ1, we implement MOFES by using NSGA-II.

For a specific split of a dataset into the training set and the test-
ing set, as there exists randomness in MOFES and some baseline

methods, we independently

fore, MOFES will return 10 Pareto optimal sets in total on the train-
ing set. In our experiment, we first combine solutions in 10 Pareto

optimal sets into one set T for further analysis. Then, we analyze
the results of MOFES in two ways. In the first way, we divide all
solutions in T into different groups according to the number of
selected features. For every group, each solution in this group se-
lects the same number of features. Notice that these solutions with
the same number of selected features may select different features.
Then, the average performance on the testing set in terms of AUC

run these methods 10 times. There-
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Fig. 8. The Distribution of Performance in terms of HV for Different PMAs on Relink by using NB as the Classifier.
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Fig. 9. Performance Comparison of Different Feature Selection Methods on RELINK when Using KNN as the Classifier.

will be computed for each group. We use line MOFES-AVG to rep-
resent this analysis way. In the second way, we choose the pareto
front from the T based on the performance of these solutions on
the testing set. We use line MOFES-Pareto to represent this analy-
sis way.

When using KNN as the classifier, the comparison results on
RELINK and PROMISE are shown in Figs. 9 and 10. In each sub-
figure, x-axis represents the number of selected feature by MOFES
and all baseline methods, while y-axis represents AUC performance
generated by different methods. At the top of each subfigure, there
exists a text, which contains project name and a pair of two values
enclosed in a parentheses. These two values represent the number
of original features and average performance value in terms of AUC
respectively when using no feature selection method (i.e., the base-
line method FULL). For example, Apache (26, 0.68) indicates that
Apache dataset has 26 original features, and the prediction model
constructed by KNN when using all these features can achieve 0.68
on average in terms of AUC. Notice all the baseline methods will be
executed 10 times independently. They may obtain the same fea-
ture subset in different runs. Therefore, for these method, they may
have less than 10 points in some subfigures.

In Figs. 9 and 10, compared with FULL, all feature selection
baseline methods can find some solutions, which are better than
FULL among 3 projects in RELINK and 10 projects in PROMISE. It
verifies that feature selection is useful in the context of SDP. Taking
Apache project as an example, FULL (i.e., using all the original fea-
tures) can only obtain 0.68. However, FR1 and FS1 can obtain the
best value of 0.74 and 0.76 respectively by only using 6 features.
WS1 can obtain the best value of 0.79 by only using 3 features.
For our proposed method MOFES, it can also obtain the best value

of 0.79 by only using 3 features. Meanwhile, almost in all projects,
MOFES can select the fewest features while obtaining better per-
formance.

We also analyze the number of features selected by all base-
line methods. For some baseline methods in filter based ranking
method category (i.e., FR1 to FR7), they select a specific number
of features (i.e., 6 for RELINK and 7 for PROMISE), which is sug-
gested by Gao et al. (2011). For FECAR (i.e., FR8 to FR11), they se-
lect a slightly different number of features and the reason is that
features are selected by FECAR from each cluster proportionally on
the cluster size and the ceil operator (i.e., [) is used. For example,
we assume the project has N features and we want to selected N;
features (N; is set as 6 for RELINK and set as 7 for PROMISE) from
the original features by using FECAR. Then for a cluster C, which
has |C| features in this cluster, FECAR will choose top (‘C'%Nﬂ fea-
tures from this cluster. For baseline methods in filter based sub-
set method and wrapper based subset selection method categories
(i.e., FS1, FS2 and WS1 to WSS8), they select different number of
features in different runs and the number of selected features dis-
tributes in a large value range. For MOFES, when selecting features,
it has more flexibility since it can generate different Pareto op-
timal sets in different executions. In most cases, MOFES can find
solutions, which can obtain better performance by selecting fewer
features.

To further show the competitiveness of MOFES, we conduct
Win/Tie/Loss analysis between our method and each baseline
method. For example, supposing MOFES method returns Pareto op-
timal set {A, B, C, D} and a baseline method returns a solution E.
If and only if there exist at least one solution in set {A, B, C, D},
which is Pareto dominance on E and the rest of the set are not
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Fig. 10. Performance Comparison of Different Feature Selection Methods on PROMISE when Using KNN as the Classifier.

Pareto dominance by E, we mark MOFES method as a ‘Win’. If and
only if there exist at least one solution in set {A, B, C, D}, which
is Pareto dominance by E and the rest of the set are not Pareto
dominance by E, we mark MOFES as a ‘Loss’. Otherwise, we mark
MOFES method as a ‘Tie’.

The overall Win/Tie/Loss evaluation results when comparing
MOFES to all baselines for 4 classifiers can be found in Table 7.
The first two columns represent the classifiers used in MOFES and
the datasets used in experiments. The remaining columns repre-
sent 22 baseline methods. Each row refers to the result when com-
paring MOFES to other baseline methods given a specific classi-
fier and a specific dataset. Since there are 10 independent runs
for each method, it is obvious that the sum of Win/Tie/Loss are
100 for PROMISE (since PROMISE has 10 projects) and 30 for
RELINK (since RELINK has 3 projects). For a specific classifier,
we also give out the summarization of all the Win/Tie/Loss of
MOFES on both datasets when compared to a specific baseline
method.

In Table 7, it is not hard to find that MOFES can outperform all
baseline methods on almost all the datasets when different classi-
fiers are used. Due to the length limitation of this paper, the details
of comparison results in terms of Win/Tie/Loss when using differ-
ent classifiers can be found in Appendix C.

To conduct statistical analysis, we choose the solution with best
performance in terms of AUC in the Pareto optimal set gener-
ated by MOFES for each run, since baseline feature selection meth-
ods only return one solution for each run. Then we use Wilcoxon
signed-rank test to examine whether the performance difference
between MOFES and a specific baseline feature selection method is
statistically significant. Moreover, we use the Benjamini-Hochberg
(BH) procedure to adjust p-values if we perform multiple compar-
isons. If the test shows a significant difference, we further com-
pute Cliff's §, which is a measure for non-parametric effect size,
to examine whether the magnitude of the difference is substan-
tial or not. The meaning of effectiveness level of Cliff's § and its
value range can be found in Table 8. In summary, MOFES performs
significantly better or worse than the specific baseline feature se-
lection method, if BH corrected p-value is less than 0.05 and the
effectiveness level is not negligible based on Cliff;;s §. While the
difference between these two methods is not significant, if (1) p-

value is not less than 0.05 or (2) p-value is less than 0.05 and the
effectiveness level is negligible.

The overall statistical analysis results can be found in Table 9.
It is not hard to find that MOFES can perform significantly bet-
ter than all baseline methods in terms of p-value and Cliff's §
whether on PROMISE or on RELINK when different classifiers are
used.

To comprehensively analyze the performance of MOFES, we
also use F1 performance measure to make a comparison between
MOFES and FULL. There are four possible outputs for an module
classified in a target project: a module can be classified as defec-
tive when it is truly defective (true positive, TP); it can be classi-
fied as defective when it is actually non-defective (false positive,
FP); it can be classified as non-defective when it is actually de-
fective (false negative, FN); or it can be classified as non-defective
and it is truly non-defective (true negative, TN). Based on above
four possibilities, F1 can be computed as follow:

2xPxR
Fl="—— 1
P+R M
where P (= TP/(TP + FP)) is the proportion of modules that are

correctly predicted as defective among those predicted as defec-
tive; R (= TP/(TP+FN)) is the proportion of defective modules
that are correctly predicted. F1 is the harmonic average of the P
and R and this performance measure has also been widely used
in previous SDP studies (Xia et al, 2016; Kim et al., 2008; Nam
et al., 2013). The comparison results on RELINK are summarized in
Table 10. In this table, the first column shows the project name
and the remaining columns shows the comparison results for dif-
ferent classifiers. We analyze the results of MOFES in the first way
(i.e., MOFES-AVG). In this way, we divide all solutions into differ-
ent groups according to the number of selected features. For each
group, the average performance in terms of AUC will be computed
for each group. Moreover, some cells with light blue background
indicate the average performance of MOFES is better than FULL
when a specific classifier is used. From Table 10, we can find that
MOFES wins FULL in almost all the datasets. Therefore, MOFES can
not only effectively decrease the number of selected features but
also increase the performance of later constructed models. For ex-
ample, MOFES improves FULL by 31.1% when using LR as the clas-
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Table 7

The Overall Summarization on Win/Tie/Loss Evaluation Results for Different Classifiers.

Baselines

FR1
PROMISE 93/7/0 93/7/0 95/5/0 95/5/0 92/7/1

Classifier Projects

FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FS1 FS2 WSs1 WS2 WSs3 WS4 WS5 WS6 Ws7 WS8 None

FR2

89/11/0 99/1/0 99/1/0
28/1/1

99/0/1

99/1/0 94/6/0 98/2/0 93/7/0

29/0/1

100/0/0 97/3/0 96/4/0 94/6/0

89/9/2 98/2/0 98/2/0 99/1/0

93/7/0

148

30/0/0  30/0/0

30/0/0

30/0/0 30/0/0 29/1/0

30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 29/1/0 30/0/0 29/1/0 29/1/0 30/0/0 29/1/0 30/0/0 29/1/0 30/0/0

RELINK
Total

128/1/1 124/6/0 128/2/0 122/8/0 129/0/1 117/12/1 129/1/0 129/1/0

98/2/0 92/8/0 98/2/0 94/6/0
30/0/0 29/1/0 30/0/0 30/0/0

123/7/0 123/7/0 125/5/0 125/5/0 122/7]1 122/8/0 119/9/2 127/3/0 127/3/0 129/1/0 129/1/0 127/3/0 125/5/0 124/6/0

100/0/0 98/2/0

98/2/0  96/4/0

100/0/0 97/3/0 99/1/0 99/1/0 96/4/0 100/0/0 99/1/0 99/1/0 93/7/0
30/0/0

PROMISE 100/0/0 100/0/0 100/0/0 100/0/0 99/1/0

KNN

30/0/0  30/0/0

29/1/0

28/2/0 29/1/0  27/3/0

27/3/0 29/1/0 28/2/0 27/3/0 27/3/0 28/2/0 26/4/0

28/2/0  28/2/0 27/3/0 27/3/0

RELINK
Total

128/2/0 125/5/0 130/0/0 128/2/0

100/0/0 97/3/0

128/2/0 128/2/0 127/3/0 127/3/0 126/4/0 129/1/0 125/5/0 126/4/0 126/4/0 124/6/0 126/4/0 127/3/0 128/2/0 120/10/0 128/2/0 121/9/0 128/2/0 124/6/0

<

96/4/0  98/2/0

97/3/0 98/2/0 96/4/0 90/10/0

30/0/0 30/0/0 30/0/0 30/0/0

95/5/0 96/4/0 95/5/0 92/8/0 98/2/0 97/3/0 99/1/0 97/3/0 95/5/0 94/6/0 94/6/0

PROMISE 93/7/0 93/7/0 92/7/1

LR

30/0/0  30/0/0

30/0/0 30/0/0 30/0/0 30/0/0 30/0/0  30/0/0

30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 30/0/0 29/0/1

RELINK
Total

127/3/0 128/2/0 126/4/0 120/10/0 130/0/0 127/3/0 126/4/0 128/2/0

99/1/0

123/7/0 123/7/0 122/7/]1 125/5/0 126/4/0 125/5/0 122/8/0 128/2/0 127/3/0 128/1/1 127/3/0 125/5/0 124/6/0 124/6/0

99/1/0  98/2/0
30/0/0  30/0/0
129/1/0 128/2/0

99/1/0  98/2/0

100/0/0 98/2/0 96/4/0

PROMISE 95/5/0 96/4/0 92/8/0 93/7/0 94/6/0 95/5/0 97/3/0 98/2/0 97/3/0 99/1/0 99/1/0 98/2/0 97/3/0 97/3/0

NB

29/1/0  29/1/0

30/0/0 28/2/0 29/1/0 30/0/0
129/1/0 128/2/0 127/3/0 126/4/0

30/0/0

28/2/0 29/1/0 29/1/0 27/3/0 28/2/0 29/1/0 28/2/0 29/0/1

27/2/1  29/0/1 28/11 29/0/1 28/1/1

RELINK
Total

128/2/0 127/3/0

122/771 125/4/1 120091 122/7]1 122/7/1 123/7/0 126/4/0 127/3/0 124/6/0 127/3/0 128/2/0 126/4/0 126/3/1 127/3/0
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Table 8
Cliffs § and Corresponding Effectiveness
Level suggested by Benjamini and Hochberg

(1995).
Cliff's & Effectiveness Level
|6] <0.147 Negligible
0.147 <18 <0.33 Small
0.33<|8| <0.474 Medium
0.474 < 6| Large

sifier on Apache. The similar conclusions can be also drawn on
PROMISE too.

Summary for RQ2: MOFES can achieve better performance
while selecting fewer features in most cases when compared
to 22 state-of-the-art baseline feature selection methods.

5.3. Result analysis for RQ3

In this RQ, we want to analyze which features are frequently
selected by MOFES, and these findings can provide guidelines for
collecting SDP datasets with higher quality in the future. Tables 11
and 12 list the top-10 features frequently selected by MOFES on
RELINK and PROMISE respectively. In these two tables, we divide
all columns into four groups according to the used classifier. In
each group, there has three columns, which denote feature name,
category and selection proportion respectively.

For RELINK, the feature with the first rank are CountLineCode-
Exe, CountLineBlank, CountLineCodeExe and CountStmtDecl when
the used classifiers are J48, KNN, LR and NB respectively. How-
ever, most of the top-1 features belong to the category of CTM
(Count Metric), and the selection proportion of the feature with
the first rank is almost two times as that of the feature with the
second rank except for NB is used as the classifier. When analyz-
ing top-5 features, most of these features are from the category
of CTM except for LR is used as the classifier. However, when LR
is used as the classifier, the selection proportion of the top-1 fea-
ture is 0.618 and this feature belongs to the category of CTM. In
summary, features from the category of CTM are frequently se-
lected for RELINK and these features help to construct high-quality
models.

For AEEEM, most of the top-1 selected features are from the
category of OOM (object oriented metrics) and the selection pro-
portion is about 0.3. Moreover, features from the CK subcategory,
Martin subcategory or ECK subcategory are frequently selected in
top-10 features (i.e., 6/10, 7/10, 6/10, or 7/10 when J48, KNN, LR
or NB is used as the classifier respectively). When analyze top-3
features, features from the CK subcategory or Martin subcategory
are more frequently selected, which indicates these features from
these two subcategories may more suitable for constructing high-
quality models.

Summary for RQ3: Features in different feature categories
may obtain different performances in the context of SDP. The
proposed method MOFES can make good use of the features
from different feature categories, which is help for construct-
ing high-quality SDP models.

5.4. Result analysis for RQ4

In this RQ, we mainly analyze the computational cost of our
method MOFES and make a comparison between MOFES and all



Table 9

Statistical Analysis Results for Different Classifiers in terms of p-value and Cliff’s &.

Category Baseline  J48 KNN LR NB
PROMISE RELINK PROMISE RELINK PROMISE RELINK PROMISE RELINK
p-value ) p-value ) p-value § p-value ) p-value § p-value ) p-value § p-value §
Filter based Ranking Methods FR1 1.00E-04 0.625 1.14E-02 0.625 4.36E-05 0.725 5.60E-05 0.725 1.51E-05 0.798 1.60E-03 0.798 185E-03 0.575 3.50E-04 0.575
FR2 1.07E-04 0.623 144E-02 0.623 2.67E-05 0.745 4.16E-05 0.745 2.35E-05 0.780 2.04E-03 0.780 1.07E-03 0.604 4.85E-04 0.604
FR3 8.13E-05 0.633 1.57E-02 0.633 3.15E-05 0.738 3.10E-05 0.738 2.80E-05 0.773 2.92E-03 0.773 136E-03 0.591 4.85E-04 0.591
FR4 7.33E-05 0.637 7.62E-03 0.637 2.56E-05 0.747 3.60E-05 0.747 1.72E-05 0.793 5.03E-04 0.793 1.32E-03 0.593 3.50E-04 0.593
FR5 1.54E-04 0.608 1.71E-02 0.608 3.28E-05 0.737 3.09E-05 0.737 343E-06 0.856 107E-04 0.856 9.29E-04 0.611 6.67E-04 0.611
FR6 122E-04 0.617 1.92E-03 0.617 4.36E-05 0.725 3.09E-05 0.725 6.94E-06 0.829 8.51E-04 0.829 8.66E-04 0615 151E-04 0.615
FR7 1.60E-04 0.607 3.98E-03 0.607 1.08E-04 0.687 124E-05 0.687 1.88E-05 0.789 115E-04 0.789 8.66E-04 0.615 1.79E-04 0.615
FR8 131E-04 0.615 2.13E-02 0.615 4.02E-05 0.728 2.26E-04 0.728 2.06E-05 0.785 110E-03 0.785 3.32E-03 0.542 2.51E-04 0.542
FR9 1.55E-04 0.608 9.07E-03 0.608 4.19E-05 0.727 2.95E-04 0.727 3.62E-05 0.762 2.59E-03 0.762  2.74E-03  0.553 4.13E-04 0.553
FR10 2.79E-04 0.584 9.80E-03 0.584 165E-04 0.668 3.37E-04 0.668 7.27E-06 0.827 5.90E-05 0827 127E-03 0.595 5.70E-04 0.595
FR11 140E-04 0.612 1.33E-02 0.612 6.26E-05 0.710 3.84E-04 0.710 3.62E-05 0.762 4.61E-03 0.762 2.49E-03 0.558 2.51E-04 0.558
Filter based Subset Methods FS1 8.71E-05 0.631 2.02E-03 0.631 4.02E-05 0.728 1.72E-04 0.728 197E-05 0.787 160E-03 0.787 2.74E-03  0.553  2.12E-04 0.553
FS2 3.87E-05 0.661 1.28E-02 0.661 4.54E-05 0.723 190E-05 0.723 172E-05 0.793 4.05E-03 0.793 2.11E-03  0.567 1.03E-04 0.567
Wrapper based Subset Selection Methods WS1 3.08E-05 0.669 2.19E-03 0.669 135E-04 0.677 4.17E-05 0.677 3.88E-06 0851 6.73E-04 0.851 5.46E-05 0.744 7.67E-05 0.744
WS2 6.37E-05 0.643 2.30E-03 0.643 126E-04 0.680 3.10E-05 0.680 9.58E-06 0.816 192E-04 0816 151E-03 0.585 6.17E-05  0.585
WS3 2.48E-05 0.677 193E-03 0.677 4.72E-05 0.722 558E-06 0.722 2.56E-06 0.867 7.48E-04 0.867 6.54E-05 0.736 2.12E-04 0.736
Ws4 6.15E-05 0.644 8.53E-04 0.644 113E-04 0.685 4.03E-06 0.685 798E-06 0.824 2.62E-06 0.824 1.85E-03 0.575 2.12E-04 0.575
WS5 135E-04 0.613 8.16E-04 0.613 8.25E-05 0.698 121E-07 0.698 151E-05 0.798 178E-04 0.798 185E-03 0.575 8.87E-05 0.575
WS6 9.66E-05 0.627 3.68E-03 0.627 7.94E-05 0.700 4.04E-06 0.700 5.50E-06 0.838 2.51E-05 0.838 1.07E-03 0.604 4.13E-04 0.604
WS7 145E-04 0.611 2.25E-03 0.611 2.90E-05 0.742 106E-05 0.742 8.35E-06 0.822 5.76E-04 0.822 4.85E-04 0.644 6.17E-05 0.644
Ws8 7.32E-05 0.637 2.30E-03 0.637 108E-04 0.687 114E-04 0.687 144E-05 0.800 6.36E-05 0.800 191E-03 0.573 8.87E-05 0.573
No Feature Selection FULL 2.50E-05 0.677 5.04E-04 0.677 1.78E-04 0.665 4.03E-06 0.665 6.04E-06 0.835 7.35E-06 0.835 2.11E-03 0.567 126E-04 0.567
Table 10
Comparison Results on RELINK between MOFES and FULL in terms of F1.
Projects  J48 KNN LR NB
MOFES FULL MOEFES FULL MOFES FULL MOFES FULL
# Features Avg # Features Avg # Features Avg # Features Avg # Features Avg # Features Avg # Features Avg # Features Avg
Apache 1 0.698 26 0.671 1 0.640 26 0.665 1 0.723 26 0.670 1 0.703 26 0.706
2 0.718 2 0.718 2 0.742 2 0.720
3 0.744 3 0.747 3 0.787 3 0.750
4 0.703 4 0.738 4 0.723 4 0.743
5 0.700 5 0.722 5 0.757 5 0.730
7 0.667 6 0.760 7 0.800 7 0.750
10 0.759 7 0.743 8 0.776 9 0.754
8 0.721 9 0.879
Safe 1 0.817 26 0.741 1 0.747 26 0.719 1 0.796 26 0.708 1 0.788 26 0.731
2 0.818 2 0.799 2 0.817 4 0.917
4 0.889 5 0.857 4 0.727 5 0.696
5 0.870
9 0.900
ZXing 1 0835 26 0.768 1 0.816 26 0.748 1 0.818 26 0794 1 0.812 26 0.781
2 0.818 2 0.789 2 0.828 2 0.801
3 0.828 3 0.796 3 0.822 4 0.824
5 0.824 4 0.757 4 0.827
5 0.759 5 0.830
6 0.749 7 0.834
7 0.833 9 0.831
8 0.773
9 0.766
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Table 11
Top 10 Features Frequently Selected by MOFES on RELINK.

J48 KNN LR NB

Feature Name Category Selection Proportion Feature Name Category Selection Proportion Feature Name Category Selection Proportion Feature Name Category Selection Proportion

CountLineCodeExe CT™M 0.451 CountLineBlank CT™M 0.552 CountLineCodeExe CT™M 0.618 CountStmtDecl CT™M 0.292

CountLineBlank CTM 0.279 MaxCyclomaticStrict CPM 0.296 AvgEssential CPM 0.366 AvgCyclomatic CPM 0.280

AvgEssential CPM 0.255 CountLineCodeExe CT™M 0.245 CountLineBlank CTM 0.315 RatioCommentToCode CTM 0.268

AvgLineBlank CTM 0.237 CountStmtDecl CTM 0.243 MaxCyclomaticStrict CPM 0.250 AvgLineComment CT™M 0.246

MaxCyclomaticModified CPM 0.204 AvgLineComment CT™M 0.180 SumEssential CPM 0.147 CountLine CT™M 0.225

SumCyclomaticModified CPM 0.140 CountLineCodeDecl CT™M 0.169 CountStmtExe CT™M 0.136 CountStmtExe CTM 0.198

MaxCyclomaticStrict CPM 0.133 SumCyclomaticStrict CPM 0.143 MaxCyclomaticModified CPM 0.135 CountLineCodeDecl  CTM 0.186

CountLineCode CTM 0.126 MaxCyclomaticModified CPM 0.142 SumCyclomaticStrict CPM 0.134 AvgCyclomaticStrict ~ CPM 0.166

AvgCyclomaticStrict CPM 0.116 SumCyclomaticModified CPM 0.139 AvgCyclomaticStrict CPM 0.124 MaxCyclomaticStrict CPM 0.155

CountStmt CTM 0.095 AvgLine CT™M 0.135 SumCyclomatic CPM 0.123 CountLineCodeExe CTM 0.153

Table 12
Top 10 Features Frequently Selected by MOFES on PROMISE.

J48 KNN LR NB
Feature Name  Category Selection Proportion  Feature Name  Category  Selection Proportion  Feature Name  Category  Selection Proportion  Feature Name  Category  Selection Proportion
CE Martin 0.365 MFA HD 0.306 CE Martin 0.348 LCOM3 HS 0.364
WMC CK 0.270 CBO CK 0.252 CA ECK 0.336 CE Martin 0.306
CA Martin 0.263 CE Martin 0.240 CBO CK 0.324 RFC CK 0.272
NPM HS 0.240 DAM HD 0.176 RFC CK 0322 MAX(CC) CPM 0.246
RFC CK 0.238 WMC CK 0.159 NPM HD 0.263 CA Martin 0.216
MFA BD 0.194 NOC CK 0.147 AMC ECK 0.209 CAM HD 0.209
AMC ECK 0.185 RFC CK 0.142 IC ECK 0.180 AMC ECK 0.198
LOCM3 HS 0.183 DIT CK 0.136 LCOM3 HS 0.177 CBM ECK 0.179
CBO CK 0.182 NPM HD 0.133 CAM HD 0.168 CBO CK 0.155

LOC CPM&OOM  0.165 CBM ECK 0133 MAX(CC) CPM 0.168 IC ECK 0.152
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baseline methods. We collect the sum of 10 independent execution
running time for each baseline method and MOFES on 13 projects.
Notice that the gathered running time includes feature selection,
data preprocessing, model construction on the training set and the
model application on the testing set. To conduct empirical studies,
we implement all the methods by Java programming language with
Weka packages and JMetal packages (Durillo and Nebro, 2011b).
All the methods are executed on CentOS Linux 7 (Memory: 32 GB,
Processor: Intel Xeon(R) CPU E5-2609 v2 @ 2.50GHz x 8). More-
over, we use the multi-thread technology supported by JMetal to
speed up the execution of MOFES. The final results can be found
in Table 13.

In Table 13, all the columns are separated into six groups. The
first group lists the project name. The second group includes our
proposed method MOFES. The next three groups include methods
in filter based ranking method category, filter based subset method
category, wrapper based subset selection method category respec-
tively. The last group is the baseline method using no feature se-
lection. For each project, the cell is emphasized in bold for the cor-
responding method with the highest computational cost for differ-
ent groups. Moreover, the cell is filled with grey color for the cor-
responding method with the highest computational cost in all the
methods.

From Table 13, for filter based feature ranking method cate-
gory, FR7 needs highest computational cost. For filter based subset
method category, FS2 needs highest computational cost. For wrap-
per based subset method category, WS6 needs highest computa-
tional cost. The computational cost of our proposed method MOFES
need 120.799 seconds on average on PROMISE and need 64.743
seconds on average on RELINK. It is not hard to find that computa-
tional cost of MOFES is higher than filter based feature selections
methods, but lower than most of wrapper based feature selection
methods.

Summary for RQ4: The average computational cost of MOFES
is higher than filter based feature selection methods, but is
competitive in wrapper based feature selection methods. The
computational cost of MOFES is 32.336 ~ 100.198 seconds on
RELINK and 50.97 ~262.524 seconds on PROMISE.

5.5. Threats to validity

In this subsection, we mainly discuss the potential threats to
validity of our empirical studies.

Threats to external validity are about whether the observed ex-
perimental results can be generalized to other subjects. To guaran-
tee the representative of our empirical subjects, we chose RELINK
and PROMISE datasets, which have been widely used by previ-
ous SDP empirical studies (Menzies et al., 2007; Tantithamthavorn
et al., 2017; Lessmann et al., 2008; Ghotra et al., 2015; Wang et al.,
2016b; Nam and Kim, 2015; Liu et al., 2016; Xu et al., 2016a, 2016b;
Liu et al., 2014b, 2015; Song et al., 2011). In addition, we choose
four classical classifier (i.e., J48, KNN, LR, and NB) as the classifiers
for MOFES, which are also widely used by previous research for
software defect prediction (Radjenovic et al., 2013; Kamei and Shi-
hab, 2016; Hall et al., 2012; Ghotra et al., 2017; Khoshgoftaar et al.,
2012; Rahman and Devanbu, 2013; Xia et al., 2016).

Threats to internal validity are mainly concerned with the un-
controlled internal factors that might have influence on the exper-
imental results. To minimizes the internal threats, we implement
these methods by pair programming. Test cases are designed and
then used to verify the correctness of our implemented MOFES
and other baseline feature selection methods. Moreover we uti-
lize mature third-party libraries (such as Weka packages) to im-

Table 13

Computational Cost of Different Feature Selection Methods on RELINK And PROMISE (Unit: Second).

Filter based

None

Subset Methods Wrapper based Subset Selection Methods

FS1

Filter based Ranking Methods

FR1

MOFES

Project Name

WS1 WSs2 WS3 WS4 WS5 WS6 WS7 WSs8

FS2

FR9  FR10 FR11

FR8

FR3 FR4  FR5 FR6  FR7

FR2

0.969

31.599 294.61

346.669 2173.33

1420.672 171858 572.73

58.107
54.963
10.225

1589 8.651 1456 1.227 3.124
1.278

1.649 9.038

1.446
1.844
0.921

5.733 3455 24.852
11186 3.599 165.905

164.793 2155 0.592 0.523 0.511

262.524 2.463 0.651

Ant-1.7

1.52

2188.037 207.592 913.973 456.704 2274.889 30.322 406.96

395.55

1245 2429

0.649 0.564

Camel-1.6

Ivy-2.0
Jedit-4.0

16.225 215.513 0.406

27.791 204122 132.257 1167.808
50.892
95.908
82.545

55.898
35.394

0.583 2.042 0393 0515 0.772

69.122 1664 0.526 0.383 0.246 1279 1856 25.71
1.96

63.871
75.077

1152.375 32.952 155.586 0.403

1048.872

229.296 275.183

32.889 452451

53.475
40.484
40.154
29.787

0.652 0.549 1.368

64

0.878 0.576 1.

33.219

0.385 0.209 0.975

1.644 047

145439 0.326

18.134

209.355 249.129

571.447
745.007
345.456
309.818

2.287 0.598 0.547 1.489

0.695 0.6
1322

1592 12.528

1702 0495 0.362 0.227 1.227

Lucene-2.4
Poi-3.0

0.637

1481.567 43.606 220.951

286.577 288.271
152.527
147.021

0.482 0395 1.605

1.039 2.46

11.296

1988 2.183

93.14 1766 0.614 0.356 0.301

55.023 1514 0.46

0.219

23455 12647
14.88

157.856 816.122

1.262 0.304 0.291 0.989
0326 0.57

1122 036

1364 1217 0.508 0.408
0.637 0.447
1.878
0.95

1404 10.658

4181

0.375 0.236 0.737

Synapse-1.2

125.705 0.276

165.724 942.349

0.618

1

0.2

5097 1292 0443 03
216.699 2584 0.674 0.847 0.931

156.771

Velocity-1.6
Xalan-2.6

2110435 70.955 232.527 091

3404.765 12.008 260.861
3150.522 21365

367.353

887.322 74594

1636.743 296.55

659.235

421.273
24.026
21.923
7.39
9.973

1178 4.429

1.954 8.286 0.917

30.085
0.861

6.931

0.78

550.482 171.461

82.701
33.199
19.722

3.697 1105 0.616 1.301

13.134

1437 11133
1354 13.989

Xerces-1.4 1978 0.596 0.466 0.425 3.204 25

Apache
Safe

169.805 0.404

84.466

170.684 294.901

46.575

634.059

0.617 0.835 0.389 0217 0495

1.031

61.695 1.635 0.433 0.348 0.242 0.64

32.336

100.198 1.66
Average on PROMISE 120.799 1.876 0.552 0465 0.386 3.388 2.409 33.956

0.083
0.664

4.885

64.856

165.654

0.518 0.368 0.493 0.254 0.149 0.178

0.911

0.267 0.163 0.353

1132 0.351

523129 238.674 2764166 20.065 277.061

1912.725 63.333

872.442
904.146

1.165

0.611

0.837 2944 0.61

0496 0356 0254 2.073 2752 62.356

Zxing

298.919 1657.251 29.414 218.462 0.645
15.438

110.713  415.341

38.751
94.106

76.538
13.095
61.898

4.049 0.755 0.689 1.808

1108 0.971
0.820 0.607

1.041

0.384

177111

246.796 199.477 2094.014

376.446 275.971

1424 0418 0.326 0.613

1.848 29.159

1476 0.427 0324 0.220 1.022

64.743

Average on RELINK
Average on ALL

1758.043 26.189 208.920 0.584

1.532 879.758

0.887 3.443 0.677 0.605

1784 0.523 0.432 0.348 2.842 2280 32.849

107.863
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plement classifiers and use jmetal* packages to implement PMAs.
Besides, different values of hyperparameters may generate differ-
ent results for the same classifier. For the convenience of ex-
periment replication, we use default values for hyperparameters
of classifiers in Weka. In the future, we want to investigate the
performance of MOFES by considering hyperparameter optimiza-
tion (Tantithamthavorn et al., 2016). Meanwhile, many quality indi-
cators are proposed for evaluate the quality of Pareto fronts gener-
ated by different PMAs, such as IGD, epsilon. This paper only con-
sider HV indicator, since it is mostly used in evaluation of PMAs in
previous studies.

Threat to construct validity are about whether the performance
metrics used in the empirical studies reflect the real-world situa-
tion. To minimize the threads, we used AUC to evaluate the per-
formance of the prediction model. This performance metric has
been widely used in current software defect prediction research
(Tantithamthavorn et al., 2017; Zhang et al., 2016; Tantithamtha-
vorn et al., 2016; Xu et al., 2016b, 2016a; Liu et al., 2016, 2015;
Ghotra et al., 2015; Liu et al., 2014b; Lessmann et al., 2008).

Threats to conclusion validity focus on the used statistical
analysis methods. In this paper, the Friedman test is used to
ranking PMAs, which helps to ensure the confidence of perfor-
mance comparison for different PMAs. Besides, Win/Tie/Loss anal-
ysis is also used for comparison between MOFES and all baseline
methods.

6. Conclusion and future work

In this paper, we formalize feature selection for software de-
fect prediction as a multi-objective optimization problem and pro-
pose MOFES method. Based on our empirical research, we find that
multi-objective feature selection is very useful for SDP and MOFES
can effectively select fewer but useful features to build high-quality
SDP models.

In the future, we firstly want to consider more projects
from open source community or commercial enterprises to ver-
ify whether our empirical results can be generalized. Secondly, we
want to optimize the performance of our method and consider
other recently proposed PMAs. Thirdly, we want to incorporate
class imbalanced learning methods into MOFES, since the num-
ber of defective modules is less than the number of non-defective
modules in most SDP datasets. Fourthly, we only consider wrapper
based multi-objective optimization algorithms in this paper since
its performance is better than the filter based multi-objective op-
timization algorithms in most cases. In the next step, we will an-

4 https://jmetal.github.io/jMetal/.

alyze this type of method in depth as a supplement to this study.
Fifthly, we want to consider more classifiers (such as decision tree,
logistic regression) to verify the effectiveness of MOFES. Finally, re-
cently a few studies (Jiarpakdee et al., 2018, 2019; Tantithamtha-
vorn et al., 2018) have been conducted to investigate the impacts
of feature selection methods on the interpretation of defect pre-
diction models and the interpretation of prediction models can be
used to formulate empirical theories related to software quality,
which are essential to chart quality improvement and maintenance
plans. Therefore we want to investigate the impact of our proposed
feature selection method on the interpretation of prediction mod-
els in the future.
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Appendix A. Comparison Results based on the Mean and
Standard Deviation in terms of HV

Tables A.1 and A.2 show the results based on mean and stan-
dard deviation in terms of HV on RELINK and PROMISE respec-
tively. In these two tables, some cells have gray background. In
particular, a darker one means the corresponding PMA can achieve
the best performance while a lighter one means the correspond-
ing PMA can achieve the second best performance. Based on these
two tables, we find that NSGA-II can achieve the best performance
in most cases followed by MOCell. In particular, when analyzing re-
sults on RELINK in Table A.1, we can find NSGA-II can achieve the
best performance in 8 times. While MOCell can achieve the best
performance in 3 times and achieve the second best performance
in 6 times. When analyzing results on PROMISE in Table A.2, we
can find NSGA-II can achieve the best performance in 27 times and
achieve the second best performance in 10 times. While MOCell
can achieve the best performance in 4 times and achieve the sec-
ond best performance in 20 times.

Comparison Results for Different PMAs based on the Mean and Standard Deviation in terms of HV on RELINK.

PAES

SMSEMOA

RandomSearch

7.49e — 014 7¢_02
6.69¢ — 011 ge_02
7.85¢ — 013 4002
7.66e — 016.56—03
7.79 — 014 0002
6.85¢ — 0147603
6.52e — 015‘45703
5.01e — 013.7¢_02
6.77¢ — 0124002
8.64e — 013}5(.,03

Table A1
NSGA-II MOCell SPEA2
Apache.KNN 7.50e — 011 4¢_02 7.62e — 01g2¢_03
Safe.KNN 6.59¢e — 013.0¢_02 6.69¢ — 011 4¢_02
ZXing.KNN 7.91e — 0133¢_02 7.88e — 015.9¢-02
Apache.LR 7.65e — 0175003 7.69e — 017.0¢_03
Safe.LR 7.93e — 0148003 7.87e — 011 8e_02
ZXing.LR 6.87e — 011 1e-03 6.87e — 011 4¢-03
Apache.]48 6.56e — 0]9‘29703 6.50e — 012119703
Safe.J48 5.25e — 017.5¢_09 5.25e — 017.50_09
ZXing.J48 6.83e — 011 6e-02 6.69e — 0132002
Apache.NB 8.64e — 01306,03 8.64e — 0112(.,03
Safe.NB 6.09e — 01¢.0e+00 6.09e — 01¢.0e+00

ZXing.NB

0.00e + 000 0e- 00

0.00e + 000 0¢-00
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0.00e + 000 g 00
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0.00¢e + 000 ge-+00
3.25¢ — 0143002
5.44e — 017113702
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Table A.2
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Comparison Results for Different PMAs based on the Mean and Standard Deviation in terms of HV on PROMISE.

NSGA-II

MOCell

SPEA2

PAES

SMSEMOA

RandomSearch

Ant-1.7J48
Camel-1.6.J48
Ivy-2.0.J48
Jedit-4.0.J48
Lucene-2.4.]48
Poi-3.0-]48
Synapse-1.2.]48
Velocity-1.6.J48
Xalan-2.6.J48
Xerces-1.4.J48
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Camel-1.6.KNN
Ivy-2.0.KNN
Jedit-4.0.KNN
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7.73e — 011.8¢_08
7.69e — 01g 0-+00
6.91e — 01]‘35703
8.04e — 017 4¢_03
7.23e — 01g 0e+00

8.40e — 017.9¢_03
5.92e - 01 7.2e—02
6.70e — 01420 02
7.64e — 0145002
7.67e — Olg}ge,og
7.94e — 0137._02
7.76e — O13.50_02
6.46e — 0]2‘48702
8.61e — 0172603
8.05¢ — 0145003
6.48e — 0152, 03
6.50e — 0]2_55702
7.26e — 0127602
7.22¢ — 0151002
7.35e — 014}53702
6.71e — 0176002
6.83¢ — 0154002
4.09e — 01 5.3e—09
7.73e — 015.9¢_02
8.19¢ — 01, 5003
4.94e — Olo‘geﬂjo
7.41e — 01395703
7.80e — 016 10_04
8.13e — 01350 02
8.05e — 0]2_63702
8.85¢ — 0176¢-04
8.30e — 014 7603
7.97e — 01145,03
8.03e — 0148003
7.83e — 0190100
7.52e — 01g7¢_03
7.55e — 01 1.4e—03
7.05e — 011 10_02
7.28¢ — 0135003
7.43e — 0]2‘43702
7.73e — 011 8¢_08
7.69¢ — 012 6e_04
6.91e — 01 1.3e—08
8.03e — 01g50_03
7.23e — 01g.0c+00

8.44e — 01355, 03
6.62e — 013_18702
7.00e — 011 8002
7.99¢ — 0150003
7.76e — 017}39703
8.10e — 0145603
7.97e — 014 2002
6.63e — 016.3e—03
8.62e — 016303
8.06e — 013 50_03
6.48e — 0158 03
6.63e — 014_38703
7.31e — Olg30.03
7.52e — 019 ,0¢+00
7.77e — 01735,03
6.95e — 013.4¢-03
7.16e — 011 ge_02
4.09e — 01 5.3e—09
8.14e — 0133003
8.20e — 013 10_04
4.94e — O]DD@+00
7.44e — 0111]3702
7.81e — 014 1003
8.30e — 0153003
8.19¢ — 01 52e—04
8.85¢ — 013.1¢-03
8.31e — 01390 04
7.98e — 01 1.2e—03
7.99¢e — 0135 0e—03
7.83e — 019 .0¢+00
7.56e — 01360 04
7.55e — 011_08703
7.10e — 011 10_08
7.33e — 0127003
7.48e — 015‘25703
7.73e — 011 8008
7.69e — 019 .0¢+00
6.91e — 01 1.3e—08
7.99e — 0197003
7.23e — 019 .0+00

5.95e — 0150002
4.73e — 012_75702
4.78¢ — 0136002
5.91e — 013 10_02
5.54e — 01258702
5.96e — 0149¢-02
5.99¢ — 012,00 02
4.12e — 014‘05702
6.95e — 013 0¢_02
4.51e — 0174002
2.12e — 01g.8e_02
4.06e — 01 5.9e—02
3.86e — 011 ge_01
3.49 — 0157 02
5.65e — 01523,02
291e — 01111
4.67¢ — 0145002
0.00€ + 000 e+00
6.11e — 014.1c-02
4.98¢ — 0130002
0.00e + 000 e 00
5.17e — 01 5.4e—02
3.64e — 01660 02
6.09¢ — 0142002
6.27e — 01 3.9e—02
6.99¢ — 015.9¢0_02
6.22¢ — 0165002
5.41e — 01 6.1e—02
5.22e — 01g3e_02
3.64e — 0140002
3.94e — 019 4¢0_02
5.38¢ — 01 3.3e—02
3.03e — 0115001
4.66¢ — 013 5002
5.00e — 013}95702
3.94e — 015602
4.44e — 016302
2.62e — 019}5(.,02
5.72e — 0135¢._02
2.61e — Olgge oo
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Appendix B. Comparison Results based on the Median and IRQ
in terms of HV

Tables B.1 and B.2 show the results based on median and IRQ in
terms of HV on RELINK and PROMISE respectively. In these two ta-
bles, some cells have gray background. In particular, a darker one
means the corresponding PMA can achieve the best performance
while a lighter one means the corresponding PMA can achieve the
second best performance. Based on these two tables, we also find
that NSGA-II can achieve the best performance in most cases fol-

lowed by MOCell. In particular, when analyzing results on RELINK
in Table B.1, we can find NSGA-II can achieve the best performance
in 4 times and achieve the second best performance in 3 times.
While MOCell can achieve the best performance in 4 times and
achieve the second best performance in 5 times. When analyzing
results on PROMISE in Table B.2, we can find NSGA-II can achieve
the best performance in 30 times and achieve the second best per-
formance in 9 times. While MOCell can achieve the best perfor-
mance in 7 times and achieve the second best performance in 20
times.

PAES

SMSEMOA

RandomSearch

7.56e — 013 1e_02
6.72¢ — 011 2002
7.79¢ — 015 0e_02
7.68e — Ol]}ze,oz
7.84e — 011.8._02
6.87¢ — 0121003
6.51e — 01455,03
5.25e — Olgge—02
6.79¢ — 0123002
8.62e — 017‘33703

7.63e — 01520_02
6.64¢ — 0139002
7.42¢ — 015 702
7.62e — 01 1.6e—02
7.74e — 0350_q2
6.83¢ — Olgse o3
6.47e — 01 1.7e—02
5.25e — 01¢,0e+00
6.54¢ — 019 4002
8.49¢e — 0]119702

Table B.1
Comparison Results for Different PMAs based on the Median and IQR in terms of HV on RELINK.
NSGA-II MOCell SPEA2

Apache.KNN 7.49¢e — 013 4¢0_02 7.64e — 0175003
Safe. KNN 6.64e — 0134002 6.77e — 013.0¢_02
ZXing.KNN 8.00e — 014.4¢_02 7.93e — 0163002
Apache.LR 7.67e — 01139,02 7.71e — 0]2_43703
Safe.LR 7.93e — 0165003 7.94e — 0146¢-03
ZXing.LR 6.88e — 011 1003 6.88e — 0148004
Apache.]48 6.58e — 01 1.3e—02 6.51e — 014‘55703
Safe.J48 5.25e — 01¢.0e+00 5.25e — 01¢.0e+00
ZXing.J48 6.78¢ — 011.9¢_02 6.76e — 0132, 02
Apache.NB 8.65e — 0]4 8e—03 8.64e — 012'36703
Safe.NB 6.09e — 01 0e+00 6.09e — 01¢.0e+00

ZXing.NB

0.00e + 000 0¢.00

0.00e + 000 0¢- 00

6.09e — 010 0e+00
0.00€ + 000,000

6.09¢ — 010,0e+00
0.00€ + 000,000

7.63e — 013 4e-02
6.41e — 01g.00_02
8.08¢ — 0156002
7.65e — 011‘43702
7.87¢ — 0112002
6.88¢ — 013 1003
6.47e — 014119703
5.03e — Olgge_02
6.77¢ — 01g 4003
8.59¢e — 019,]E,03
6.09e — 010,0e100
0.00€ + 000 ge-00

1.91e — 013.7._02
6.89 — 025 0002
4.15¢ — 0135002
2.65e — 011,55701
3.44e — 015.9¢_02
1.13¢ — 014 4001
0.00€ + 000 ge--00
0.00€ + 000 ge--00
3.16e — 01760_02
5.14e — 011'1(,,0]
0.00€ + 000 ge--00
0.00€ + 000 ge-00
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Table B.2
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Comparison Results for Different PMAs based on the Median and IQR in terms of HV on PROMISE.

NSGA-II

MOCell

SPEA2

PAES

SMSEMOA

RandomSearch

Ant-1.7.J48
Camel-1.6.J48
Ivy-2.0.J48
Jedit-4.0.J48
Lucene-2.4.]48
Poi-3.0-J48
Synapse-1.2.]48
Velocity-1.6.]48
Xalan-2.6.J48
Xerces-1.4.]48
Ant-1.7KNN
Camel-1.6.KNN
Ivy-2.0.KNN
Jedit-4.0.KNN
Lucene-2.4.KNN
Poi-3.0.KNN
Synapse-1.2.KNN
Velocity-1.6.KNN
Xalan-2.6.KNN
Xerces-1.4.KNN
Ant-1.7.LR
Camel-1.6.LR
Ivy2.0.LR
Jedit-4.0.LR
Lucene-2.4.LR
Poi-3.0.LR
Synapse-1.2.LR
Velocity-1.6.LR
Xalan-2.6.LR
Xerces-1.4.LR
Ant-1.7.NB
Camel-1.6.NB
Ivy-2.0.NB
Jedit-4.0.NB
Lucene-2.4.NB
Poi-3.0.NB
Synapse-1.2.NB
Velocity-1.6.NB
Xalan-2.6.NB
Xerces-1.4.NB

8.47e — 0138003
6.80e — 01 3.8e—02
7.07¢ — 01, 000
8.04e — 01500 g
7.79 — 012}93703
8.13e — 0154003
8.09¢ — 013 10_04
6.66e — 0]2‘28703
8.65e — 01g6e_03
8.08e — 01¢ ge+00
6.49¢e — 01 0e+00
6.61e — 018.36—03
7.36e — 011 10-02
7.52e — 019 ,¢+00
7.82e — 011}23702
6.96e — 010 0e-00
7.39 — 0149003
4.09¢ — 01¢ ge100
8.14e — 016.30_03
8.20e — 01¢ ge+00
4.94e — 0]009+00
7.50e — 01159,03
7.81e — 019,100
8.35¢ — Olgsp 04
8.19e — 019 0e+00
8.87e — 011.2¢_03
8.32e — 01¢ ge+00
7.98e — 0]4}19704
8.05e — 01¢.ge100
7.83e — 019 .0¢+00
7.56e — Olo'ge+og
7.56e — 01358,05
7.10e — 010 ge+00
7.35e — 019 0¢-+00
7.54e — 01¢e+00
7.73e — 01¢.0e+00
7.69e — 019 .0¢-+00
6.91e — 01¢.e-+00
8.08e — 0116¢_04
7.23e — 019 .0e+00

8.45e — 0145003
6.92e — 016.36—02
6.99¢ — 014 3,_g
8.12¢ — 015 10.02
7.80e — 01559,03
8.12e — 0113002
8.09¢ — 01,906
6.66e — 01¢,0¢+00
8.61e — 011 .2¢_02
8.08e — 01¢ ge+00
6.49e — 010 0e100
6.58e — 01 3.8e—03
7.35¢ — 017 30_03
7.52e — 019 ,¢+00
7.82e — 017}23703
6.96e — 010 0e00
7.16€ — 014300
4.09¢ — 01¢ ge100
8.11e — 01g5¢_03
8.20e — 01¢ ge+00
4.94e — O]OOe+00
7.50e — 01238703
7.80e — 011 50_03
8.36¢ — 01450 03
8.19¢e — 011.8e—03
8.85e — 011 4003
8.32¢ — Ol 3004
7.97e — 01 1.7e—03
8.05e — 01¢.0e100
7.83e — 019 .0¢+00
7.56e — Olg'ge+og
7.56e — 01¢.0e-+00
7.10e — 010 ge+00
7.32e — 015 6003
7.53e — 016.66—04
7.73e — 01¢.0e+00
7.69e — 019 .0¢-+00
6.91e — 01¢e-+00
8.08e — 01¢.0e100
7.23e — 019 .0e+00

8.44e — 0115003
6.51e — 0]1_15701
7.05e — 0158003
7.98e — 0115002
7.78e — Ole}]e,og
8.11e — Olgge_03
8.05e — 0197003
6.65e — 013}3(.,03
8.62e — 019,90 03
8.08e — 01¢ ge+00
6.49¢ — 017.90_04
6.60e — 01598,03
7.36e — 011 4¢_03
7.52e — 014.4¢-04
7.81e — Ol]}]e,oz
6.96e — 010.0¢+00
7.18e — 013 1¢-02
4.09e — 01¢ ge100
8.15e — 014303
8.20e — 01¢ ge+00
4.94e — O]OOe+00
7.50e — 01238,03
7.81e — 0113603
8.33e — 016.1¢e-03
8.19¢ — 0]9_63704
8.86e — 011 4003
8.31e — 0163¢-04
7.98e — 0]1 6e—03
8.05e — 01¢.0¢+00
7.83e — 019 .0¢+00
7.56e — Olo'ge+og
7.56e — 01438704
7.10e — 019 ge+00
7.32e — 0150¢-03
7.54e — 01¢0e+00
7.73e — 01¢.0e+00
7.69e — 010 .0¢+00
6.91e — 01¢e-00
8.08e — 0137604
7.23e — 019 .0+00

8.42e — 0159, 03
5.73e — Ol],ze,m
6.99¢ — 0167002
7.83¢ — 01390 02
7.68e — 01 7.1e—03
8.06e — 011 ge_02
7.90e — 01520 02
6.60e — 01405702
8.61e — 0112¢-02
8.07¢ — 013.60_03
6.49¢ — 017.90_04
6.59¢ — 011}25702
7.35e — 0124003
7.52e — 0131005
7.50e — 01225702
6.96€ — 010.e+00
7.05¢ — 01410_02
4.09e — 019 0e400
7.99¢e — 013 6e_02
8.20¢ — 011 5003
4.94e — Olo'ge+og
7.41e — 018_55703
7.80e — 011 0004
8.25¢ — 0128002
8.17e — 0]2_23703
8.85€ — 010.0e+00
8.30e — 015.0e_03
7.96e — 012A19703
8.05e — 013.9¢_03
7.83e — 019 .0e-+00
7.56e — 01950 04
7.55e — 012}15703
7.10e — 0135¢_04
7.27e — 01290 03
7.51e — 016.36—03
7.73e — 01¢.0e100
7.69€ — 01¢.0e-00
6.91e — 010A05+00
8.07e — 0158003
7.23e — 019 ,e-+00

8.44e — 0145003
6.70e — 01438702
7.02e — 0114002
7.97¢ — 011500
7.79 — 014‘39703
8.11e — 017.0¢_03
8.01e — 015 10_02
6.66e — Olz}ze,[)g
8.61e — 0191003
8.08¢ — 0153003
6.49e — 017.90_04
6.65e — 01 6.2e—03
7.31e — 01g.4¢_03
7.52e — 01g 0c+00
7.79 — 013‘79703
6.96e — 010,0e+00
7.18¢ — 011 5009
4.09¢ — 010,400
8.15e — 0137003
8.20e — 01¢ 0c+00
4.94e — 019 0e+00
7.47e — 01 8.5e—03
7.81e — 0115003
8.31e — 011 10.0
8.19¢e — 0131)5704
8.85e — 011.4¢_03
8.32¢ — 013004
7.98e — 01175,03
8.05e — 0116e_02
7.83e — 01q.0c+00
7.56e — 010‘0e+00
7.55e — 01 2.1e—03
7.10e — 01 0e+00
7.35¢ — 015 6003
7.51e — 015}35703
7.73e — 010.0e+00
7.69e — 01g 0+00
6.91e — 01¢.0e00
8.05e — 013.1¢_02
7.23e — 01g 0e+00

5.79e — 01443702
4.75e — 0]4_05702
4.77¢ — 0132002
5.90¢ — 013 4002
5.43e — 0]4_23702
5.86e — 0162e-2
5.88¢ — 013 1002
4.08e — 0]7 7e—02
6.93e — 0153._02
4.57¢ — 0lageoo
1.85e — 0178002
3.83e — 0]5_53702
3.59 — 011 9001
3.38¢ — 014 201
5.40e — 01 7.2e—02
3.02e — 0133601
4.75¢ — 0173002
0.00€ + 000 0¢-00
6.06e — 013 1e_02
4.95¢ — 010002
0.00e + 000,0¢--00
5.14e — 01 8.6e—02
3.36e — 013 5002
6.09¢ — 01 350_02
6.22e — 01 5.6e—02
6.89¢ — 0195003
6.33¢ — 0173002
5.45e — 016.18—02
5.15e — 016 7¢_02
3.79¢ — 015 0_02
4.02e — 0113001
5.42e — 01 5.5e—02
2.80e — 014 5001
4.61e — 0ls6e_02
5.09e — 0]6_33702
4.09¢ — 0137002
4.25¢ — 0173007
2.52e - 01 1.7e—01
5.68e — 016 4e-02
2.45¢ — 017 7002

Appendix C. Detailed Comparison Results in terms of
Win/Tie/Loss for Different Classifiers

project name in two datasets. The remaining columns represent
22 baseline methods. Each row refers to the result in terms of
Win/Tie/Loss for each dataset. The last row shows the summariza-
tion of all the Win/Tie/Loss when comparing to a specific baseline
method.

The detailed comparison results in terms of Win/Tie/Loss when
comparing MOFES with all baseline methods for different classi-
fiers can be found in Tables C.1-C.4. The first column represents



Table C.1

Comparison Results in terms of Win/Tie/Loss when using J48 as the Classifier.

Projects Baselines-J48
FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FS1 FS2 WS1 WS2 WS3 WS4 WS5 WSs6 WS7 WS8 FULL
Ant-1.7 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0  9/1/0 10/0/0  10/0/0
Camel-1.6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  8/2/0 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0
Ivy-2.0 6/4/0 6/4/0 7/3/0 6/4/0 8/1/1 7/3/0 7/12  8/2/0 8/2/0 10/0/0  10/0/0 9/1/0 9/1/0 9/1/0 9/1/0 10/0/0  9/1/0 8/2/0 9/0/1 6/4/0 10/0/0  9/1/0
Jedit-4.0 10/0/0  10/0/0 10/0/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0 10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/O 10/0/0  10/0/0
Lucene-2.4  10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0
Poi-3.0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0O 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0O 10/0/0  10/0/0 a
Synapse-1.2  9/1/0 7/3/0 9/1/0 9/1/0 8/2/0 8/2/0 6/4/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  8/2/0 10/0/0  8/2/0 10/0/0  10/0/0 10/0/0  7/3/0 10/0/0  10/0/0 =
Velocity-1.6  8/2/0 10/0/0  9/1/0 10/0/0  7/3/0 8/2/0 7/3/0  10/0/0 10/0/0  9/1/0 10/0/0  9/1/0 9/1/0 8/2/0 10/0/0  9/1/0 10/0/0  6/4/0 10/0/0  8/2/0 10/0/0  10/0/0 ><
Xalan-2.6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0  10/0/0  10/0/0  10/0/0  9/1/0 10/0/0 10/0/0 10/0/0  7/3/0 10/0/0 10/0/0 10/0/0 9/1/0 9/1/0 10/0/0 2
Xerces-1.4  10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/O 10/0/0  10/0/0 e
Apache 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0 10/0/0 9/1/0 9/1/0 10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0 10/0/0  9/1/0 10/0/0  10/0/0 S
Safe 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 10/0/0  9/0/1 10/0/0  10/0/0 10/0/0 10/0/0  9/0/1 10/0/0  10/0/0 :
Zxing 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/O 10/0/0  10/0/0 5
Total 123/7/0 123/7/0 125/5/0 125/5/0 122/7/1 122/8/0 119/9/2 127/3/0 127/3/0 129/1/0 129/1/0 127/3/0 125/5/0 124/6/0 128/1/1 124/6/0 128/2/0 122/8/0 129/0/1 117/12/1 129/1/0 129/1/0 S
Ei
K=Y
J.é)
g
§‘
Table C.2 &
Comparison Results in terms of Win/Tie/Loss when using KNN as the Classifier. g
Projects Baselines-KNN ;
FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FS1 FS2 WS1 WS2 WS3 WS4 WS5 WSs6 WS7 WSs8 FULL '.5
S
Ant-1.7 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0 9/1/0 10/0/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  9/1/0 &
Camel-1.6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/O 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 N
Ivy-2.0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0 ﬁk\”’
Jedit-4.0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0 10/0/0  9/1/0 10/0/0 10/0/0  8/2/0 10/0/0  10/0/0 10/0/0  9/1/0 8/2/0 9/1/0 8/2/0 9/1/0 10/0/0  10/0/0 10/0/0  10/0/O I
Lucene-2.4  10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  9/1/0 9/1/0 10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 10/0/0  10/0/0 10/0/0  9/1/0 9/1/0 10/0/0  10/0/0  9/1/0
Poi-3.0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 9/1/0 10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0
Synapse-1.2 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  6/4/0 10/0/0  7/3/0 10/0/0  6/4/0 9/1/0 6/4/0 10/0/0  10/0/0
Velocity-1.6 10/0/0  10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  9/1/0 10/0/0  10/0/0  10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0  10/0/0  10/0/0
Xalan-2.6 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/O 10/0/0  9/1/0 10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0
Xerces-1.4  10/0/0  10/0/0  10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0
Apache 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  8/2/0 10/0/0  10/0/0  10/0/0  8/2/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0
Safe 10/0/0  10/0/0 10/0/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/O
Zxing 8/2/0 8/2/0 7/3/0 7/3/0 8/2/0 9/1/0 8/2/0 7/3/0 7/3/0 10/0/0  6/4/0 8/2/0 9/1/0 9/1/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  9/1/0 10/0/0  10/0/0
Total 128/2/0 128/2/0 127/3/0 127/3/0 126/4/0 129/1/0 125/5/0 126/4/0 126/4/0 124/6/0 126/4/0 127/3/0 128/2/0 120/10/0 128/2/0 121/9/0 128/2/0 124/6/0 128/2/0 125/5/0 130/0/0 128/2/0
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Table C.3

Comparison Results in terms of Win/Tie/Loss when using LR as the Classifier.

Projects Baselines-LR

FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FS1 FS2 WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 FULL
Ant-1.7 8/2/0 9/1/0 9/1/0 10/0/0 10/0/0  8/2/0 8/2/0 8/2/0 9/1/0 10/0/0  8/2/0 8/2/0 10/0/0  8/2/0 10/0/0  10/0/0  9/1/0 8/2/0 10/0/0  10/0/0  9/1/0 10/0/0
Camel-1.6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  8/2/0 10/0/0  10/0/0 10/0/0  10/0/0
Ivy-2.0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0
Jedit-4.0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  9/1/0 10/0/0 10/0/0  10/0/0  9/1/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  9/1/0 9/1/0 9/1/0
Lucene-2.4 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 9/1/0 10/0/0  9/1/0 10/0/0  9/1/0 10/0/0 10/0/0  10/0/0 9/1/0 9/1/0
Poi-3.0 7/3/0 6/4/0 4/5/1 6/4/0 6/4/0 9/1/0 5/5/0 10/0/0  10/0/0  9/1/0 10/0/0 10/0/0  10/0/0  9/1/0 9/1/0 10/0/0  10/0/0  6/4/0 10/0/0  8/2/0 10/0/0  10/0/0
Synapse-1.2  9/1/0 9/1/0 10/0/0  10/0/0 10/0/0  9/1/0 9/1/0 10/0/0  10/0/0 10/0/0  10/0/0  8/2/0 9/1/0 9/1/0 9/1/0 10/0/0  9/1/0 10/0/0 10/0/0  10/0/0 9/1/0 10/0/0
Velocity-1.6  9/1/0 9/1/0 9/1/0 9/1/0 10/0/0  9/1/0 10/0/0  10/0/0  9/1/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  9/1/0 10/0/0 10/0/0  10/0/0 10/0/0  10/0/0
Xalan-2.6 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  10/0/0
Xerces-1.4  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0 10/0/0  7/3/0 8/2/0 10/0/0  8/2/0 10/0/0  8/2/0 10/0/0  10/0/0  10/0/0  10/0/0
Apache 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  10/0/0
Safe 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  10/0/0
Zxing 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  9/0/1 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/O 10/0/0  10/0/0  10/0/0  10/0/0
Total 123/7/0 123/7/0 122/7/1 125/5/0 126/4/0 125/5/0 122/8/0 128/2/0 127/3/0 128/1/1 127/3/0 125/5/0 124/6/0 124/6/0 127/3/0 128/2/0 126/4/0 120/10/0 130/0/0 127/3/0 126/4/0 128/2/0

Table C.4
Comparison Results in terms of Win/Tie/Loss when using NB as the Classifier.

Projects Baselines-NB

FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FS1 FS2 WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 FULL
Ant-1.7 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0
Camel-1.6 5/5/0 6/4/0 4/6/0 4/6/0 5/5/0 5/5/0 7/3/0 10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 9/1/0 7/3/0 10/0/0  10/0/0  10/0/0  6/4/0 10/0/0  8/2/0 9/1/0 10/0/0
Ivy-2.0 10/0/0  10/0/0 9/1/0 9/1/0 10/0/0  10/0/0  10/0/0  9/1/0 9/1/0 10/0/0  9/1/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0
Jedit-4.0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0  10/0/0
Lucene-2.4  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 9/1/0 10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0  9/1/0
Poi-3.0 10/0/0  10/0/0 9/1/0 10/0/0  10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 10/0/0  10/0/0  10/0/0
Synapse-1.2 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0 10/0/0 10/0/0  10/0/0 10/0/0  9/1/0 9/1/0 10/0/0 10/0/0  10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0
Velocity-1.6 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0  10/0/0 10/0/0  10/0/0  10/0/0  10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0
Xalan-2.6 10/0/0  10/0/0 10/0/0  10/0/0  9/1/0 10/0/0  10/0/0 9/1/0 9/1/0 9/1/0 10/0/0  10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0
Xerces-1.4  10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0  10/0/0 10/0/0  10/0/0 10/0/0  10/0/0  10/0/0
Apache 8/1/1 9/0/1 8/1/1 9/0/1 8/1/1 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 10/0/0  10/0/0 10/0/0 9/1/0 10/0/0  10/0/0  10/0/0 9/1/0 10/0/0  10/0/0
Safe 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0  9/1/0 10/0/0 10/0/0 9/1/0 9/1/0 10/0/0  9/1/0 9/0/1 10/0/0 10/0/0  9/1/0 9/1/0 10/0/0  9/1/0 10/0/0  10/0/0  10/0/0
Zxing 9/1/0 10/0/0  10/0/0 10/0/0 10/0/0  10/0/0  10/0/0  10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0  10/0/0 10/0/0 10/0/0  10/0/0 10/0/0  10/0/O
Total 122/7/1 125/4/1 120/9/1 122/7/1 122/7/1 123/7/0 126/4/0 127/3/0 124/6/0 127/3/0 128/2/0 126/4/0 126/3/1 127/3/0 129/1/0 128/2/0 127/3/0 126/4/0 128/2/0 127/3/0 129/1/0 128/2/0
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